English
新闻公告
More
化学进展 2018, Vol. 30 Issue (4): 383-397 DOI: 10.7536/PC170833 前一篇   后一篇

• 综述 •

幻数团簇丝氨酸八聚体:结构和手性特征

任娟1, 边申1, 王奕允1, 孔祥蕾1,2*   

  1. 1. 南开大学 化学学院 元素有机化学国家重点实验室 天津 300071;
    2. 南开大学 天津化学化工协同创新中心 天津 300071
  • 收稿日期:2017-08-29 修回日期:2017-09-26 出版日期:2018-04-15 发布日期:2018-01-30
  • 通讯作者: 孔祥蕾 E-mail:kongxianglei@nankai.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21475065,21627801)资助

Magic-Number Cluster of Serine Octamer: Structure and Chiral Characteristics

Juan Ren1, Shen Bian1, Yiyun Wang1, Xianglei Kong1,2*   

  1. 1. State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China;
    2. Collaborative Innovation Center of Chemical Science and Engineering(Tianjin), Nankai Universiy, Tianjin 300071, China
  • Received:2017-08-29 Revised:2017-09-26 Online:2018-04-15 Published:2018-01-30
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21475065, 21627801).
自从2001年丝氨酸八聚体第一次在质谱中被观察到,这种奇特的幻数团簇就受到研究者们的广泛关注。丝氨酸八聚体具有显著的同手性优势,而且它的手性能够通过对映选择性取代反应传递给其他分子。一些研究者提出这种丝氨酸八聚体的同手性优势很可能与生命的同手性起源相关。本文综述了丝氨酸八聚体的产生、结构和手性特征等方面的研究结果和进展,其中包括运用串联质谱(MS/MS),气相H/D交换,离子淌度,红外解离光谱等多种实验方法以及理论计算对丝氨酸八聚体及含有取代单元的八聚体的相关研究。这些结果逐步地揭示了丝氨酸八聚体的结构特点和性质,进一步加深了人们对其在手性识别和手性传递方面的作用的理解。然而,由于体系的复杂性,真正地理解其结构、同手性选择性的原因以及其在生物分子同手性起源中的作用仍是一个非常具有挑战性的问题。
Serine octamer as a unique “magic-number” cluster in the gas phase, has been extensively studied by experimentalists and theorists since its discovery in mass spectrometry in 2001. It is characterized by a pronounced preference of homochirality. Interestingly, the chirality of serine octamer can transfer to other molecules through enantioselective substitution reactions. Thus it is suggested that it might be related to the origin of our homochiral world. In this review, all the results and progresses in the formation, structure and chiral signature of serine octamer and substituted serine octamer over the past years are summarized. Different methods, including mass spectrometry with different ionization sources, gas phase H/D exchange, ion mobility, infrared photodissociation spectroscopy, and theoretical calculations are applied for the cluster ions. Different characteristics of the magic cluster are discovered gradually, helping us to have a deep insight into its structure and role in chiral recognition and transmission. However, due to the complexity of the system, it is still a big challenge to understand its true structure, the reason of its performance in homochirality and its role in the origin of biomolecular homochirality.
Contents
1 Introduction
2 Generation of serine octamer
2.1 Electrospray
2.2 Other spray-based ionization method
2.3 Evaporation and sublimation
2.4 Other method
2.5 Mechanism
3 Structural studies
3.1 MS/MS
3.2 Gas-phase H/D exchange
3.3 Ion mobility
3.4 IRPD spectroscopy
3.5 Theoretical calculation
4 Substituted serine octamers
4.1 Substituted by other amino acids
4.2 Substituted by sugars
4.3 Other relative clusters
5 Chiral characteristic
5.1 Enantiometic enrichment and chiral transmission
5.2 Chiral differentiation
5.3 Discussion
6 Conclusion

中图分类号: 

()
[1] Becker E W, Bier K, Henkes W Z. Phys., 1956, 146:333.
[2] Castleman A W, Khanna S N. J. Phys. Chem. C, 2009, 113:2664.
[3] Kroto H W, Heath J R, O'Brian S C, Curl R F, Smalley R E. Nature, 1985, 318:162.
[4] Fenn J B, Mann M, Meng C K, Wong S F, Whitehouse C M. Science, 1989, 246:64.
[5] Fenn J B. Angew. Chem. Int. Ed., 2003, 42:3871.
[6] Karas M, Hillenkamp F. Anal. Chem., 1988, 60:2299.
[7] Cooks R G, Zhang D, Koch K J, Gozzo F C, Eberlin M N. Anal. Chem., 2001, 73:3646.
[8] Julian R R, Hodyss R, Kinnear B, Jarrold M, Beauchamp J L. J. Phys. Chem. B, 2002, 106:1219.
[9] Counterman A E, Clemmer D E. J. Phys. Chem. B, 2001, 105:8092.
[10] Gronert S, O'Hair R A J, Fagin A E. Chem. Commun., 2004, 17:1944.
[11] Mazurek U, Geller O, Lifshitz C, McFarland M A, Marshall A G, Reuben B G. J. Phys. Chem. A, 2005, 109:2107.
[12] Oh H B, Lin C, Hwang H Y. J. Am. Chem. Soc., 2005, 127:4076.
[13] Kong X L, Tsai I A, Sabu S. Angew. Chem. Int. Ed., 2006, 45:4130.
[14] Kong X L, Lin C, Infusini G. Chem. Phys. Chem., 2009, 10:2603.
[15] Sunahori F X, Yang G C, Kitova E N, Klassen J S, Xu Y J. Phys. Chem. Chem. Phys., 2013, 15:1873.
[16] Liao G H, Yang Y J, Kong X L. Phys. Chem. Chem. Phys., 2014, 16:1554.
[17] Ren J, Wang Y Y, Feng R X, Kong X L. Chin. Chem. Lett., 2017, 28:537.
[18] Seo J, Warnke S, Pagel K, Bowers M T, Helden G V. Nat. Chem., 2017, 9:1263.
[19] Takats Z, Nanita S C, Cooks R G, Schlosser G, Vekey K. Anal. Chem., 2003, 75:1514.
[20] Takats Z, Nanita S C, Cooks R G. Angew. Chem. Int. Ed., 2003, 42:3521.
[21] Myung S, Julian R R, Nanita S C, Cooks R G, Clemmer D E. J. Phys. Chem. B, 2004, 108:6105.
[22] Kunimura M, Sakamoto S, Yamaguchi K. Org. Lett., 2002, 4:347.
[23] Chen H W, Li M, Jin W, Jin Q H, Zheng J. Chem. Res. Chinese U., 2007, 23(6):650.
[24] Sakamoto S, Fujita M, Kim K, Yamaguchi K. Tetrahedron, 2000, 56:955.
[25] Yamaguchi K. J. Mass Spectrom., 2003, 38:473.
[26] Hirabayashi A, Sakairi M, Koizumi H. Anal. Chem., 1994, 66:4557.
[27] Hirabayashi A, Sakairi M, Koizumi H. Anal. Chem., 1995, 67:2878.
[28] Takats Z, Wiseman J M, Gologan B, Cooks R G. Anal. Chem., 2004, 76:4050.
[29] Wiseman J M, Takats Z, Gologan B, Davisson V J, Cooks R G. Angew. Chem. Int. Ed., 2005, 44:913.
[30] Schmelzeisen-Redeker G, Bütfering L, Röllgen F W. Int. J. Mass Spectrom. Ion Processes, 2002, 90:139.
[31] Takats Z, Wiseman J M, Cooks R G. Science, 2004, 306:471.
[32] Takats Z, Cooks R G. Chem. Commun., 2004, 4:444.
[33] Yang P, Xu R, Nanita S C, Cooks R G. J. Am. Chem. Soc., 2006, 128:17074.
[34] Nanita S C, Cooks R G. Angew. Chem. Int. Ed., 2006, 45:554.
[35] Perry R H, Wu C, Nefliu M, Cooks R G. Chem. Commun., 2007, 43:1071.
[36] Baumeister K J, Simon F F J. Heat Transfer., 1973, 95:166.
[37] Tartarini P, Lorenzini G, Randi M R. Heat Mass Transfer, 1999, 34:437.
[38] Ferreira da Silva F, Bartl P, Denifl S, Märk T D, Ellis A M, Scheier P. ChemPhysChem, 2010, 11:90.
[39] Iribarne J V, Thomson B A. J. Chem. Phys., 1976, 64:2287.
[40] Thomson B A, Iribarne J V. J. Chem. Phys., 1979, 71:4451.
[41] Dole M, Mack L L, Hines R L. J. Chem. Phys., 1968, 49:2240.
[42] De la Mora Fernandez J. Anal. Chim. Acta, 2000, 406:93.
[43] Konermann L, Ahadi E, Rodriguez A D, Vahidi S. Anal. Chem., 2013, 85:2.
[44] Gamero-Castano M, de la Mora Fernandez J. J. Mass Spectrom., 2000, 35:790.
[45] Nguyen S, Fenn J B. Proc. Natl. Acad. Sci., 2007, 104:1111.
[46] Wang G D, Cole R B. Anal. Chim. Acta, 2000, 406:53.
[47] Kebarle P. J. Mass Spectrom., 2000, 35:804.
[48] Spencer E A C, Ly T, Julian R R. Int. J. Mass Spectrom., 2008, 270:166.
[49] Vandenbussche S, Vandenbussche G, Reisse J, Bartik K. Eur. J. Org. Chem., 2006, 14:3069.
[50] Nanita S C, Cooks R G. J. Phys. Chem. B, 2005, 109:4748.
[51] Nanita S C, Sokol E, Cooks R G. J. Am. Soc. Mass Spectrom., 2007, 18:856.
[52] Campbell S, Rodgers M T, Marzluff E M, Beauchamp J L. J. Am. Chem. Soc., 1994, 116:9765.
[53] Campbell S, Rodgers M T, Marzluff E M, Beauchamp J L. J. Am. Chem. Soc., 1995, 117:12840.
[54] Takats Z, Schlosser G, Vekey K. Int. J. Mass Spectrom., 2003, 228:729.
[55] Valentine S J, Clemmer D E. J. Am. Chem. Soc., 1997, 119:3558.
[56] Geller O, Lifshitz C. Int. J. Mass Spectrom., 2003, 227:77.
[57] Ustyuzhanin P, Ustyuzhanin J, Lifshitz C. Int. J. Mass Spectrom., 2003, 223:491.
[58] Takats Z, Nanita S C, Schlosser G, Vekey K, Cooks R G. Anal. Chem., 2003, 75:6147.
[59] Mazurek U, McFarland M A, Marshall A G, Lifshitz C. Eur. J. Mass Spectrom., 2004, 10:755.
[60] Makarov A A. Anal. Chem., 2000, 72:1156.
[61] Eyler J R. Mass Spectrom. Rev., 2009, 28:448.
[62] Fridgen T D. Mass Spectrom. Rev., 2009, 28:586.
[63] Polfer N C. Chem. Soc. Rev., 2011, 40:2211.
[64] Yin H, Kong X L. J. Am. Soc. Mass Spectrom., 2015, 26:1455.
[65] Feng R X, Mu L, Yang S M, Kong X L. Chin. Chem. Lett., 2016, 27:593.
[66] Schalley C A, Weis P. Int. J. Mass Spectrom., 2002, 221:9.
[67] Wang C H, Wu Q, Fan W J, Zhang R Q, Lin Z J. Org. Biomol. Chem., 2012, 10:5049.
[68] Koch K J, Gozzo F C, Zhang D, Eberlin M N, Cooks R G. Chem. Commun., 2001, 18:1854.
[69] Clemmer D E, Jarrold M F. J. Mass Spectrom., 1997, 32:577.
[70] Costa A B, Cooks R G. Phys. Chem. Chem. Phys., 2011, 13:877.
[71] Nanita S C, Takats Z, Myung S, Clemmer D E, Cooks R G. J. Am. Soc. Mass Spectrom., 2004, 15:1360.
[72] Miller S A, Luo H, Pachuta S J, Cooks R G. Science, 1997, 275:1447.
[73] Ouyang Z, Takats Z, Blake T A, Gologan B, Guymon A J, Wiseman J M, Oliver J C, Davisson V J, Cooks R G. Science, 2003, 301:1351.
[74] Kocn K J, Gozzo F C, Nanita S C, Takats Z, Eberlin M N, Cooks R G. Angew. Chem. Int. Ed., 2002, 41:1721.
[75] Kong X L. J. Mass Spectrom., 2011, 46:535.
[76] Tugce E, Andrey S, Zhasmina V Z, Georg H, Nataliya K, Yan X N, Trolle R L. Langmuir, 2010, 26:18841.
[77] Nemes P, Schlosser G, Vekey K. J. Mass Spectrom., 2005, 40:43.
[78] Julian R R, Myung S, Clemmer D E. J. Phys. Chem. B, 2005, 109:440.
[79] Myung S, Lorton K P, Merenbloom S I. J. Am. Chem. Soc., 2007, 128:15988.
[80] Holliday A E, Atlasevich N, Myung S. J. Phys. Chem. A, 2013, 117:1035.
[81] Holliday A E, Atlasevich N, Valentine S J, Clemmer D E. J. Phys. Chem. A, 2012, 116:11442.
[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[6] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[7] 蒋昊洋, 熊丰, 覃木林, 高嵩, 何刘如懿, 邹如强. 用于电热转化、存储与利用的导电相变材料[J]. 化学进展, 2023, 35(3): 360-374.
[8] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[9] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[10] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[11] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[12] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[13] 顾顺心, 姜琴, 施鹏飞. 发光铱(Ⅲ)配合物抗肿瘤活性研究及应用[J]. 化学进展, 2022, 34(9): 1957-1971.
[14] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[15] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.