English
新闻公告
More
化学进展 2014, Vol. 26 Issue (11): 1793-1800 DOI: 10.7536/PC140625 前一篇   后一篇

• 综述与评论 •

细胞穿透环肽

梁妍钰1,2, 唐姗2, 郑基深*1,2   

  1. 1. 中国科学院强磁场科学中心 合肥 230031;
    2. 清华大学化学系 北京 100084
  • 收稿日期:2014-06-01 修回日期:2014-07-01 出版日期:2014-11-15 发布日期:2014-09-12
  • 通讯作者: 郑基深 E-mail:jszheng@hmfl.cas.cn

Cell-Permeable Cyclic Peptides

Liang Yanyu1,2, Tang Shan2, Zheng Jishen*1,2   

  1. 1. High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China;
    2. Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Received:2014-06-01 Revised:2014-07-01 Online:2014-11-15 Published:2014-09-12

细胞穿透环肽能够穿透细胞膜,特异性地靶向细胞内靶标,并具有较好的体内稳定性,因而具备很好的成药性,并受到研究者越来越多的关注.目前,主要有两种方式获得细胞穿透环肽,即从天然产物中获得和对已有的环肽或线性肽进行化学修饰.本文主要对上述两方面进行简要综述,重点介绍两类细胞穿透环肽天然产物以及通过化学修饰方法得到细胞穿透环肽的策略,并探讨细胞穿透环肽的结构-活性关系及其细胞穿透机理.

Cyclic peptides are of considerable interest as potential protein ligands. Cell-permeable cyclic peptides receive much attention as peptide-based drugs owing to its cell permeability, specific targeting, and excellent stability in vivo. Nowadays, the researchers working on cell-permeable cyclic peptides focus on the issues as follow: new cell-permeable cyclic peptides from natural products and their structure-activity relationships, and the chemical modifications of cyclic or linear peptides to artificially obtain cell-permeable cyclic peptides. Here, we review the issues mentioned above. This article is arranged in two sections. The first section introduces two kinds of discovered natural products as cell-permeable cyclic peptides; the second section covers the strategies of modifying cyclic or linear peptides into cell-permeable cyclic peptides and the insight of the structure-activity relationship of cell-permeable cyclic peptides.

Contents
1 Introduction
2 Cell-permeable cyclic peptides from natural products
2.1 Cyclosporine A
2.2 Cyclotides
3 Cell-permeable cyclic peptides from artificial modification
3.1 Strategies of modification based on CSA
3.2 Strategies of modification based on cyclotides
3.3 Strategies of modification based on linear peptides
4 Conclusion

中图分类号: 

()

[1] Surade S, Blundell T L. Chem. Biol., 2012, 19 (1): 42.
[2] Craik D J, Fairlie D P, Liras S, Price D. Chem. Biol. Drug Des., 2013, 81 (1): 136.
[3] Danho W, Swistok J, Khan W, Chu X J, Cheung A, Fry D, Sun H, Kurylko G, Rumennik L, Cefalu J, Cefalu G, Nunn P. Adv. Exp. Med. Biol., 2009, 611: 467.
[4] Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M. Drug Discov. Today, 2010, 15 (1/2): 40.
[5] Hamman J H, Enslin G M, Kotzé A F. BioDrugs, 2005, 19 (3): 165.
[6] Góngora-Benítez M, Tulla-Puche J, Albericio F. Chem. Rev., 2014, 114 (2): 901.
[7] Pattabiraman V R, Bode J W. Nature, 2011, 480: 471.
[8] Kent S B H. Chem. Soc. Rev., 2009, 38: 338.
[9] Zheng J S, Tang S, Huang Y C, Liu L. Acc. Chem. Res., 2013, 46 (11): 2475.
[10] Wang P, Dong S, Shieh J H, Peguero E, Hendrickson R, Moore M A S, Danishefsky S J. Science, 2013, 342: 1357.
[11] Zheng J S, Tang S, Qi Y K, Wang Z P, Liu L. Nat. Protoc., 2013, 8 (12): 2483.
[12] Fang G M, Li Y M, Shen F, Huang Y C, Li J B, Lin Y, Cui H K, Liu L. Angew. Chem. Int. Ed., 2011, 50 (33): 7645.
[13] Huang Y C, Li Y M, Chen Y, Pan M, Li Y T, Yu L, Guo Q X, Liu L. Angew. Chem. Int. Ed., 2013, 52: 4858.
[14] Zheng J S, Chang H N, Wang F L, Liu L. J. Am. Chem. Soc., 2011, 133 (29): 11080.
[15] Fang G M, Wang J X, Liu L. Angew. Chem. Int. Ed., 2012, 51: 10347.
[16] Shao Y, Lu W, Kent S B H. Tetrahedron Lett., 1998, 39: 3911.
[17] Chen J, Warren J D, Wu B, Chen G, Wan Q, Danishefsky S J. Tetrahedron Lett., 2006, 47: 1969.
[18] Cui H K, Guo Y, He Y, Wang F L, Chang H N, Wang Y J, Wu F M, Tian C L, Liu L. Angew. Chem. Int. Ed., 2013, 52: 9558.
[19] Zheng J S, Chang H N, Shi J, Liu L. Sci. China Chem., 2012, 55: 64.
[20] 唐姗(Tang S), 郑基深(Zheng J S), 杨可(Yang K), 刘磊(Liu L). 化学学报(Acta Chim. Sinica), 2012, 70: 1471.
[21] Dittmann J, Wenger R M, Kleinkauf H, Lawen A. J. Biol. Chem., 1994, 269 (4): 2841.
[22] Handschumacher R E, Harding M W, Rice J, Drugge R J, Speicher D W. Science, 1984, 226 (4674): 544.
[23] Petcher T J, Weber H, Rüegger A. Helv. Chim. Acta, 1976, 59 (5): 1480.
[24] Loosli H R, Kessler H, Oschkinat H, Weber H P, Petcher T J, Widmer A. Helv. Chim. Acta, 1985, 68: 682.
[25] Kessler H, Loosli H R, Oschkinat H. Helv. Chim. Acta, 1985, 68: 661.
[26] Kessler H, Gehrke M, Lautz J, Kåck M, Seebach D, Thaler A. Biochem. Pharmacol., 1990, 40 (1): 169.
[27] Vine W, Bowers L D. CRC Crit. Rev. Clin. Lab. Sci., 1987, 25: 275.
[28] el Tayar N, Mark A E, Vallat P, Brunne R M, Testa B, van Gunsteren W F. J. Med. Chem., 1993, 36 (24): 3757.
[29] Saska I, Gillon A D, Hatsugai N, Dietzgen R G, Hara-Nishimura I, Anderson M A, Craik D J. J. Biol. Chem., 2007, 282 (40): 29721.
[30] Zheng J S, Tang S, Guo Y, Chang H N, Liu L. ChemBioChem, 2012, 13 (4): 542.
[31] Conlan B F, Gillon A D, Craik D J, Anderson M A. Biopolymers, 2010, 94 (5): 573.
[32] Saether O, Craik D J, Campbell I D, Sletten K, Juul J, Norman D G. Biochemistry, 1995, 34 (13): 4147.
[33] Wong C T, Rowlands D K, Wong C H, Lo T W, Nguyen G K, Li H Y, Tam J P. Angew. Chem. Int. Ed., 2012, 51 (23): 5620.
[34] Greenwood K P, Daly N L, Brown D L, Stow J L, Craik D J. Int. J. Biochem. Cell Biol., 2007, 39 (12): 2252.
[35] Contreras J, Elnagar A Y, Hamm-Alvarez S F, Camarero J A. J. Control. Release, 2011, 155 (2): 134.
[36] Cascales L, Henriques S T, Kerr M C, Huang Y H, Sweet M J, Daly N L, Craik D J. J. Biol. Chem., 2011, 286 (42): 36932.
[37] Henriques S T, Huang Y H, Rosengren K J, Franquelim H G, Carvalho F A, Johnson A, Sonza S, Tachedjian G, Castanho M A, Daly N L, Craik D J. J. Biol. Chem., 2011, 286 (52): 24231.
[38] Knipp G T, Vander Velde D G, Siahaan T J, Borchardt R T. Pharm. Res., 1997, 14 (10): 1332.
[39] Gudmundsson O S, Jois S D, Vander Velde D G, Siahaan T J, Wang B, Borchardt R T. J. Pept. Res., 1999, 53 (4): 383.
[40] Boguslavsky V, Hruby V J, O'Brien D F, Misicka A, Lipkowski A W. J. Pept. Res., 2003, 61 (6): 287.
[41] Rezai T, Yu B, Millhauser G L, Jacobson M P, Lokey R S. J. Am. Chem. Soc., 2006, 128 (8): 2510.
[42] Rezai T, Bock J E, Zhou M V, Kalyanaraman C, Lokey R S, Jacobson M P. J. Am. Chem. Soc., 2006, 128 (43): 14073.
[43] Dechantsreiter M A, Planker E, Mathö B, Lohof E, Hålzemann G, Jonczyk A, Goodman S L, Kessler H. J. Med. Chem., 1999, 42 (16): 3033.
[44] Doedens L, Opperer F, Cai M, Beck J G, Dedek M, Palmer E, Hruby V J, Kessler H. J. Am. Chem. Soc., 2010, 132 (23): 8115.
[45] Yan L M, Tatarek-Nossol M, Velkova A, Kazantzis A, Kapurniotu A. Proc. Natl. Acad. Sci. U. S. A., 2006, 103 (7): 2046.
[46] Biron E, Chatterjee J, Ovadia O, Langenegger D, Brueggen J, Hoyer D, Schmid H A, Jelinek R, Gilon C, Hoffman A, Kessler H. Angew. Chem. Int. Ed., 2008, 47 (14): 2595.
[47] Chatterjee J, Laufer B, Beck J G, Helyes Z, Pintér E, Szolcsányi J, Horvath A, Mandl J, Reubi J C, Kéri G, Kessler H. ACS Med. Chem. Lett., 2011, 2 (7): 509.
[48] Ovadia O, Greenberg S, Chatterjee J, Laufer B, Opperer F, Kessler H, Gilon C, Hoffman A. Mol. Pharm., 2011, 8 (2): 479.
[49] White T R, Renzelman C M, Rand A C, Rezai T, McEwen C M, Gelev V M, Turner R A, Linington R G, Leung S S, Kalgutkar A S, Bauman J N, Zhang Y, Liras S, Price D A, Mathiowetz A M, Jacobson M P, Lokey R S. Nat. Chem. Biol., 2011, 7 (11): 810.
[50] Beck J G, Chatterjee J, Laufer B, Kiran M U, Frank A O, Neubauer S, Ovadia O, Greenberg S, Gilon C, Hoffman A, Kessler H. J. Am. Chem. Soc., 2012, 134 (29): 12125.
[51] Gunasekera S, Foley F M, Clark R J, Sando L, Fabri L J, Craik D J, Daly N L. J. Med. Chem., 2008, 51 (24): 7697.
[52] Ji Y, Majumder S, Millard M, Borra R, Bi T, Elnagar A Y, Neamati N, Shekhtman A, Camarero J A. J. Am. Chem. Soc., 2013, 135 (31): 11623.
[53] Schafmeister C E, Po J, Verdine G L. J. Am. Chem. Soc., 2000, 122 (24): 5891.
[54] Walensky L D, Kung A L, Escher I, Malia T J, Barbuto S, Wright R D, Wagner G, Verdine G L, Korsmeyer S J. Science, 2004, 305 (5689): 1466.
[55] Danial N N, Walensky L D, Zhang C Y, Choi C S, Fisher J K, Molina A J, Datta S R, Pitter K L, Bird G H, Wikstrom J D, Deeney J T, Robertson K, Morash J, Kulkarni A, Neschen S, Kim S, Greenberg M E, Corkey B E, Shirihai O S, Shulman G I, Lowell B B, Korsmeyer S J. Nat. Med., 2008, 14 (2): 144.
[56] Moellering R E, Cornejo M, Davis T N, Del Bianco C, Aster J C, Blacklow S C, Kung A L, Gilliland D G, Verdine G L, Bradner J E. Nature, 2009, 462 (7270): 182.
[57] Cui H K, Zhao B, Li Y H, Guo Y, Hu H, Liu L, Chen Y G. Cell Res., 2013, 23: 581
[58] 高帅(Gao S), 郭叶(Guo Y), 李海燕(Li H Y), 方葛敏(Fang G M). 化学进展(Prog. Chem.), 2014, 26 (1): 100.
[59] Muppidi A, Doi K, Edwardraja S, Drake E J, Gulick A M, Wang H G, Lin Q. J. Am. Chem. Soc., 2012, 134 (36): 14734
[60] Derossi D, Joliot A H, Chassaing G, Prochiantz A. J. Biol. Chem., 269 (14): 10444.
[61] Fawell S, Seery J, Daikh Y, Moore C, Chen L L, Pepinsky B, Barsoum J. Proc. Natl. Acad. Sci. U.S.A., 1994, 91(2): 664.
[62] Morris M C, Depollier J, Mery J, Heitz F, Divita G. Nat. Biotechnol., 2001, 19 (12): 1173.
[63] Mitchell D J, Kim D T, Steinman L, Fathman C G, Rothbard J B. J. Pept. Res., 56 (5): 318.
[64] Richard J P, Melikov K, Vives E, Ramos C, Verbeure B, Gait M J, Chernomordik L V, Lebleu B. J. Biol. Chem., 2003, 278 (1): 585.
[65] Ter-Avetisyan G, Tünnemann G, Nowak D, Nitschke M, Herrmann A, Drab M, Cardoso M C. J. Biol. Chem., 2009, 284 (6): 3370.
[66] Tünnemann G, Ter-Avetisyan G, Martin R M, Ståckl M, Herrmann A, Cardoso M C. J. Pept. Sci., 2008, 14 (4): 469.
[67] Liu T, Liu Y, Kao H Y, Pei D. J. Med. Chem., 2010, 53 (6): 2494.
[68] Kanovsky M, Raffo A, Drew L, Rosal R, Do T, Friedman F K, Rubinstein P, Visser J, Robinson R, Brandt-Rauf P W, Michl J, Fine R L, Pincus M R. Proc. Natl. Acad. Sci. U.S.A., 2001, 98 (22): 12438.
[69] Do T N, Rosal R V, Drew L, Raffo A J, Michl J, Pincus M R, Friedman F K, Petrylak D P, Cassai N, Szmulewicz J, Sidhu G, Fine R L, Brandt-Rauf P W. Oncogene, 2003, 22 (10): 1431.
[70] Li C, Pazgier M, Liu M, Lu W Y, Lu W. Angew. Chem. Int. Ed., 2009, 48 (46): 8712.
[71] Löttig-Tünnemann G, Prinz M, Hoffmann D, Behlke J, Palm-Apergi C, Morano I, Herce H D, Cardoso M C. Nat. Commun., 2011, 2: 453.
[72] Mandal D, Nasrolahi Shirazi A, Parang K. Angew. Chem. Int. Ed., 2011, 50 (41): 9633.
[73] Nasrolahi Shirazi A, Tiwari R, Chhikara B S, Mandal D, Parang K. Mol. Pharm., 2013, 10 (2): 488.
[74] Nasrolahi Shirazi A, Tiwari R K, Oh D, Banerjee A, Yadav A, Parang K. Mol. Pharm., 2013, 10 (5): 2008.
[75] Qian Z, Liu T, Liu Y Y, Briesewitz R, Barrios A M, Jhiang S M, Pei D. ACS Chem. Biol., 2013, 8 (2): 423.
[76] Chan D I, Prenner E J, Vogel H J. Biochim. Biophys. Acta, 2006, 1758 (9): 1184.
[77] Rothbard J B, Jessop T C, Lewis R S, Murray B A, Wender P A. J. Am. Chem. Soc., 2004, 126 (31): 9506.
[78] Rothbard J B, Kreider E, VanDeusen C L, Wright L, Wylie B L, Wender P A. J. Med. Chem., 2002, 45 (17): 3612.

[1] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[2] 朱泉霏, 郝俊迪, 严靖雯, 王雨, 冯钰锜. FAHFAs:生物功能、分析及合成[J]. 化学进展, 2021, 33(7): 1115-1125.
[3] 郭芬岈, 李宏伟, 周孟哲, 徐正其, 郑岳青, 黎挺挺. 基于非贵金属催化剂常温常压电化学合成氨[J]. 化学进展, 2020, 32(1): 33-45.
[4] 胡代花, 陈旺, 王永吉. 活性维生素D3类似物的合成及构效关系研究[J]. 化学进展, 2016, 28(6): 839-859.
[5] 李晓晖*, 黄美玲, 刘丽娜, 王燕云. 环肽类组蛋白去乙酰化酶抑制剂[J]. 化学进展, 2014, 26(09): 1527-1536.
[6] 杨楚汀, 韩军, 罗阳明, 胡胜, 汪小琳. 环肽对金属离子的识别作用[J]. 化学进展, 2014, 26(09): 1537-1550.
[7] 石玉刚, 党亚丽, 刘玉华, 白雪. 生物法与化学法制备硫酸软骨素[J]. 化学进展, 2014, 26(08): 1378-1394.
[8] 高帅, 郭叶, 李海燕, 方葛敏. 订书肽的合成与应用[J]. 化学进展, 2014, 26(01): 100-109.
[9] 刘宁, 王旭珍*, 徐文亚, 郭德才, 汤济洲, 张宝禄. 纳/微米二硫化钼的化学制备及其催化加氢脱硫应用[J]. 化学进展, 2013, 25(05): 726-734.
[10] 唐敏 樊建芬 刘健 何梁君 何珂. 环肽纳米管的应用研究[J]. 化学进展, 2010, 22(04): 648-653.
[11] 钱和 韩婵 刘利兵. 食品中化学添加剂的功能与风险控制*[J]. 化学进展, 2009, 21(11): 2424-2434.
[12] 董彬,徐景坤,郑利强. 离子液体应用于电合成导电聚合物* [J]. 化学进展, 2009, 21(09): 1792-1799.
[13] 刘晓旸. 高压化学*[J]. 化学进展, 2009, 21(0708): 1373-1388.
[14] 刘小兵,张贵生. 蝴蝶霉素及其类似物的化学合成进展[J]. 化学进展, 2008, 20(11): 1699-1707.
[15] 李晓晖,李建勋,李世荣,修志龙,西野宪和. 环肽类组蛋白去乙酰化酶抑制剂*[J]. 化学进展, 2007, 19(05): 762-768.
阅读次数
全文


摘要

细胞穿透环肽