English
新闻公告
More
化学进展 2015, Vol. 27 Issue (9): 1191-1197 DOI: 10.7536/PC150218 前一篇   后一篇

• 综述与评论 •

DNA四面体结构纳米材料及其应用

董世彪1,2, 焦雄1*, 赵荣涛2, 许金坤2, 宋宏彬2, 郝荣章2*   

  1. 1. 太原理工大学应用力学与生物医学工程研究所 太原 030024;
    2. 解放军疾病预防控制所 北京 100071
  • 收稿日期:2015-02-01 修回日期:2015-04-01 出版日期:2015-09-15 发布日期:2015-06-24
  • 通讯作者: 焦雄, 郝荣章 E-mail:hrongzhang@163.com;jiaoxiong@tyut.edu.cn
  • 基金资助:
    国家高技术发展(863)计划项目(No.2015AA020929),北京市科技新星计划(No. Z141107001814071),国家自然科学基金项目(No.21105122)和北京市自然科学基金项目(No.7132164)资助

The DNA Tetrahedron Nanostructure Materials and Their Applications

Dong Shibiao1,2, Jiao Xiong1*, Zhao Rongtao2, Xu Jinkun2, Song Hongbin2, Hao Rongzhang2*   

  1. 1. Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
    2. Institute of Disease Control and Prevention, PLA, Beijing 100071, China
  • Received:2015-02-01 Revised:2015-04-01 Online:2015-09-15 Published:2015-06-24
  • Supported by:
    The work was supported by the National High Technology Research and Development Program of China (No.2015AA020929), the Beijing Nova Program (No.Z141107001814071), the National Natural Science Foundation of China (No.21105122), and the Beijing Natural Science Foundation(No.7132164).
基于DNA纳米技术自组装的DNA四面体纳米材料,由于结构稳定、机械性能优越、分子修饰位点丰富等特点,逐渐成为DNA纳米材料领域的研究热点。此外,该DNA四面体纳米材料只需一步热变性即可自组装形成,具有合成方法简单、产率高的优点。可通过不同的设计,利用自组装方法将功能分子修饰在DNA四面体的顶点处,包裹在其笼状孔隙结构内,镶嵌或悬挂在双螺旋的边上,甚至通过引入发卡环结构等方式智能控制其结构变化。本文综述了DNA四面体结构纳米材料的设计和自组装原理、功能化修饰方法和结构的智能化,同时介绍了DNA四面体纳米材料在分子诊断、生物成像、分子输送和靶向给药等方面的应用研究,并探讨了此类纳米材料在今后应用研究中应关注的方面。
Nowadays, DNA tetrahedron nanostructure materials, formed by self-assembly based on DNA nanotechnology, have become a hot topic in the field of DNA nanomaterials because of their stable structures, superior mechanical properties, rich modification sites, and convenient fabrication methods with high yield. The synthesis of DNA tetrahedron only needs one step of thermal denaturation using four single nucleotides as raw materials. Their functionalization molecules can be modified on the vertexes, embedded between the double-stranded DNA of the tetrahedron edges, hanged on the edges, or encapsulated in the cage-like structure of the tetrahedron. The structure of tetrahedron can also be intelligently controlled through smart design such as integrating DNA hairpin loop structure onto the edges. This review introduces the design principle of the DNA tetrahedron nanostructure materials, the functionalization and intellectualization methods based on their unique nanostructure, as well as their applications on molecular diagnosis, bioimaging and targeted drug delivery, and finally discusses the considerations in the future research of this field.

Contents
1 Introduction
2 DNA tetrahedron nanostructures
2.1 The self-assembly principle
2.2 The functional modification and intellectualization
3 The applications of tetrahedron nanostructures
3.1 Molecular diagnosis
3.2 Bioimaging
3.3 Molecular transport and targeted drug delivery
4 Conclusion and outlook

中图分类号: 

()
[1] Goodman R P, Schaap I A, Tardin C F, Erben C M, Berry R M, Schmidt C F, Turberfield A.J. Science, 2005, 310(5754): 1661.
[2] Seeman N C. Nature, 2003, 421(6921): 427.
[3] Dietz H, Douglas S M, Shih W M. Science, 2009, 325(5941): 725.
[4] Seeman N C. J. Theor. Biol., 1982, 99(2): 237.
[5] Rothemund P W. Nature, 2006, 440(7082): 297.
[6] Aldaye F A, Palmer A L, Sleiman H F. Science, 2008, 321(5897): 1795.
[7] 贾思思(Jia S S), 晁洁(Chao J), 樊春海(Fan C H), 柳华杰(Liu H J). 化学进展(Progress in Chemistry), 2014, 26(5): 695.
[8] 蔡苗(Cai M), 王强斌(Wang Q B). 化学进展(Progress in Chemistry), 2010, 22(5): 975.
[9] Chhabra R, Sharma J, Liu Y, Rinker S, Yan H. Adv. Drug Delivery Rev., 2010, 62(6): 617.
[10] Chen J H, Seeman N C. Nature, 1991, 350(6319): 631.
[11] Zhang Y, Seeman N C. J. Am. Chem. Soc., 1994, 116(5): 1661.
[12] Shih W M, Quispe J D, Joyce G F. Nature, 2004, 427(6975): 618.
[13] Aldaye F A, Sleiman H F. J. Am. Chem. Soc., 2007, 129(44): 13376.
[14] 钱璐璐(Qian L L), 汪颖(Wang Y), 张钊(Zhang Z), 赵健(Zhao J), 潘敦(Pan D), 张益(Zhang Y), 刘强(Liu Q), 樊春海(Fan C H), 胡钧(Hu J), 贺林(He L). 科学通报(Chinese Science Bulletin), 2006, 51(24): 2860.
[15] He Y, Ye T, Su M, Zhang C, Ribbe A E, Jiang W, Mao C. Nature, 2008, 452(7184): 198.
[16] Bergamini C, Angelini P, Rhoden K J, Porcelli A M, Fato R, Zuccheri G. Methods, 2014, 67(2): 185.
[17] Li J, Pei H, Zhu B, Liang L, Wei M, He Y, Chen N, Li D, Huang Q, Fan C H. ACS Nano, 2011, 5(11): 8783.
[18] Charoenphol P, Bermudez H. Acta Biomater., 2014, 10(4): 1683.
[19] Seelig G, Soloveichik D, Zhang D Y, Winfree E. Science, 2006, 314(5805): 1585.
[20] Kim K R, Kim D R, Lee T, Yhee J Y, Kim B S, Kwon I C, Ahn D R. Chem. Commun., 2013, 49(20): 2010.
[21] Goodman R P, Berry R M, Turberfield A J. Chem. Commun., 2004, 12: 1372.
[22] Goodman R P, Heilemann M, Doose S, Erben C M, Kapanidis A N, Turberfield A J. Nat. Nanotechnol., 2008, 3(2): 93.
[23] Pei H, Lu N, Wen Y, Song S, Liu Y, Yan H, Fan C. Adv. Mater., 2010, 22(42): 4754.
[24] Li Z, Zhao B, Wang D, Wen Y, Liu G, Dong H, Song S, Fan C. ACS Appl. Mater. Interfaces, 2014, 6(20): 17944.
[25] Ge Z, Lin M, Wang P, Pei H, Yan J, Shi J, Huang Q, He D, Fan C, Zuo X. Anal. Chem., 2014, 86(4): 2124.
[26] 闻艳丽(Wen Y L), 林美华(Lin M H), 裴昊(Pei H), 鲁娜(Lu N), 樊春海(Fan C H). 化学进展(Progress in Chemistry), 2012, 24(9): 1656.
[27] Kim K R, Lee Y D, Lee T, Kim B S, Kim S, Ahn D R. Biomaterials, 2013, 34(21): 5226.
[28] Lee H, Lytton-Jean A K, Chen Y, Love K T, Park A I, Karagiannis E D, Sehgal A, Querbes W, Zurenko C S, Jayaraman M, Peng C G, Charisse K, Borodovsky A, Manoharan M, Donahoe J S, Truelove J, Nahrendorf M, Langer R, Anderson D G. Nat. Nanotechnol., 2012, 7(6): 389.
[29] Charoenphol P, Bermudez H. Mol. Pharmaceutics, 2014, 11(5): 1721.
[30] Keum J W, Ahn J H, Bermudez H. Small, 2011, 7(24): 3529.
[31] Liu Z, Li Y, Tian C, Mao C. Biomacromolecules, 2013, 14(6): 1711.
[32] Williams S, Lund K, Lin C, Wonka P, Lindsay S, Yan H. DNA Computing: Lecture Notes in Computer Science, Vol.5347(Eds:Goel A, Simmel F C, Sosik P).Berlin/Heidelberg:Springer, 2009.90.
[33] Zhu J H, Wei B, Yuan Y, Mi Y L. Nucleic Acids Res., 2009, 37(7): 2164.
[34] Goodman R P. Bio.Techniques, 2005, 38(4): 548, 550.
[35] Ding Y, Liu X, Zhu J, Wang L, Jiang W. Talanta, 2014, 125: 393.
[36] Ozhalici-Unal H, Armitage B A. ACS Nano, 2009, 3(2): 425.
[37] Erben C M, Goodman R P, Turberfield A J. Angew. Chem., 2006, 45(44): 7414.
[38] Wang Z, Xue Q, Tian W, Wang L, Jiang W. Chem. Commun., 2012, 48(77): 9661.
[39] Schlapak R, Danzberger J, Armitage D, Morgan D, Ebner A, Hinterdorfer P, Pollheimer P, Gruber H J, Schaffler F, Howorka S. Small, 2012, 8(1): 89.
[40] Zhou T, Wang Y, Dong Y, Chen C, Liu D, Yang Z. Bioorg. Med. Chem., 2014, 22(16): 4391.
[41] Keum J W, Bermudez H. Chem. Commun., 2012, 48(99): 12118.
[42] Han D, Huang J, Zhu Z, Yuan Q, You M, Chen Y, Tan W. Chem. Commun., 2011, 47(16): 4670.
[43] Pei H, Liang L, Yao G, Li J, Huang Q, Fan C. Angew. Chem., 2012, 51(36): 9020.
[44] Abi A, Lin M, Pei H, Fan C, Ferapontova E E, Zuo X. ACS Appl. Mater. Interfaces, 2014, 6(11): 8928.
[45] Zhang C, Tian C, Li X, Qian H, Hao C, Jiang W, Mao C. J. Am. Chem. Soc., 2012, 134(29): 11998.
[46] Walsh A S, Yin H, Erben C M, Wood M J, Turberfield A J. ACS Nano, 2011, 5(7): 5427.
[47] Keum J W, Bermudez H. Chem. Commun., 2009, 45: 7036.
[48] Yuan L, Giovanni M, Xie J, Fan C, Leong D T. NPG Asia Mater., 2014, 6(7): e112.
[49] Pei H, Wan Y, Li J, Hu H, Su Y, Huang Q, Fan C. Chem. Commun., 2011, 47(22): 6254.
[50] Ge Z, Pei H, Wang L, Song S, Fan C. Sci. China: Chem., 2011, 54(8): 1273.
[51] Lin M, Wen Y, Li L, Pei H, Liu G, Song H, Zuo X, Fan C, Huang Q. Anal. Chem., 2014, 86(5): 2285.
[52] Wen Y, Pei H, Wan Y, Su Y, Huang Q, Song S, Fan C. Anal. Chem., 2011, 83(19): 7418.
[53] Dong S, Zhao R, Zhu J, Lu X, Li Y, Qiu S, Jia L, Jiao X, Song S, Fan C, Hao R, Song H. ACS Appl. Mater. Interfaces, 2015, 7(16): 8834.
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[3] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[4] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[5] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[6] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[7] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[8] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[9] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[10] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[11] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[12] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[13] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[14] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[15] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
阅读次数
全文


摘要

DNA四面体结构纳米材料及其应用