English
新闻公告
More
化学进展 2017, Vol. 29 Issue (5): 513-523 DOI: 10.7536/PC170224 前一篇   后一篇

• 综述 •

丝胶蛋白的结构、性能及生物医学应用

肖肖1,2, 陈昌盛3*, 刘伟强1,3*, 张业顺4   

  1. 1. 清华大学生物医学工程系 北京 100084;
    2. 清华大学深圳研究生院生物医学工程系 深圳 518055;
    3. 深圳清华大学研究院 生物医用材料及植入器械重点实验室 深圳 518057;
    4. 江苏科技大学蚕业研究所农业部蚕桑遗传改良重点实验室 镇江 212018
  • 收稿日期:2017-02-24 修回日期:2017-04-09 出版日期:2017-05-15 发布日期:2017-05-10
  • 通讯作者: 陈昌盛, 刘伟强 E-mail:ccshbxn@163.com;weiqliu@hotmail.com
  • 基金资助:
    国家自然科学基金项目(No.51403116)和深圳市科技计划项目(No.JCYJ20140419122040605,JCYJ20140419122040604)资助

Structure, Features and Biomedical Applications of Silk Sericin

Xiao Xiao1,2, Changsheng Chen3*, Weiqiang Liu1,3*, Yeshun Zhang4   

  1. 1. Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China;
    2. Department of Biomedical Engineering, Graduate School of Tsinghua University at Shenzhen, Shenzhen 518055, China;
    3. Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China;
    4. The Key Laboratory of Genetic Improvement of Silkworm and Mulberry, Ministry of Agriculture, The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, China
  • Received:2017-02-24 Revised:2017-04-09 Online:2017-05-15 Published:2017-05-10
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51403116) and the Shenzhen Science and Technology Projects (No.JCYJ20140419122040605,JCYJ20140419122040604).
丝胶蛋白来源于天然蚕茧,具有良好的生物相容性和一系列独特的生物学性能,是一种性能卓越的天然生物材料。丝胶蛋白特有的氨基酸组成和结构性质赋予了其良好的水溶性、促细胞黏附和增殖活性、原位荧光性、抗氧化活性以及酪氨酸酶抑制活性等。在交联剂、化学活性基团和紫外光等作用下,丝胶蛋白能交联形成微纳米结构材料、二维(图案化)膜材料、水凝胶或三维多孔支架,在创伤修复、组织再生、药物传递、生物医药和材料涂层等生物医学领域显示出广阔的应用前景。本文基于丝胶蛋白近年来重要的研究成果,综述了丝胶蛋白的结构和理化性质,重点讨论了丝胶蛋白材料的设计方法及其在生物医学中的最新应用,并对丝胶蛋白的发展趋势进行了展望。
Silk sericin is a kind of natural material originated from a wide variety of cocoons and behaves excellent biocompatibility and a series of unique biological properties. The specific amino acid compositions and structural properties of silk sericin endow it with good water solubility, cellular adhesion and proliferation activity, in situ fluorescence, antioxidant and the inhibitory effect on tyrosinase. With the actions of cross-linking agent, chemical active group or just ultraviolet light, silk sericin can be designed into various structural biomaterials, including micro(nano)-structural materials, 2D (patterned) films, hydrogels or even 3D porous scaffolds, denoting broad prospect in biomedical applications, such as wound healing, tissue regeneration, drug delivery, medicine, material coating. Based on the significant studies of silk sericin in recent years, this review summarizes the structure and physicochemical properties of silk sericin, with a focus on the design of sericin-based biomaterials and their relevant biomedical applications. The prospective regarding the future potential of silk sericin is delivered.
Contents
1 Introduction
2 Advantages in biological features
2.1 Low(no) immunogenicity
2.2 Cell proliferation activity
2.3 In situ fluorescence property
2.4 Inhibitory effect on tyrosinase
3 Crosslinking methods and materials design
3.1 Micro (nano) materials
3.2 2D (patterned) films
3.3 Hydrogels
4 Biomedical applications
4.1 Wound dressing
4.2 Novel delivery system
4.3 Surface coating
4.4 Natural medicines
4.5 Others
5 Conclusions

中图分类号: 

()
[1] Thilagavathi G, Viju S. Advances in Silk Science and Technology. Sawston:Woodhead Publishing, 2015.219.
[2] Lamboni L, Gauthier M, Yang G, Wang Q. Biotechnol. Adv., 2015, 33:1855.
[3] Kundu S C, Dash B C, Dash R, Kaplan D L. Prog. Polym. Sci., 2008, 33:998.
[4] Koh L D, Cheng Y, Teng C P, Khin Y W, Loh X J, Tee S Y, Low M, Ye E, Yu H D, Zhang Y W, Han M Y. Prog. Polym. Sci., 2015, 46:86.
[5] Kumar P, Kumar D, Sikka P, Singh P. Anim. Reprod. Sci., 2015, 152:26.
[6] Wu J, Rong Y, Wang Z, Zhou Y, Wang S, Zhao B. Food Chem., 2015, 174:621.
[7] Aghaz F, Hajarian H, KaramiShabankareh H. Reprod. Biol., 2016, 16:87.
[8] Pérez-Rigueiro J, Elices M, Llorca J, Viney C. J. Appl. Polym. Sci., 2001, 82:1928.
[9] Teramoto H, Miyazawa M. Biomacromolecules, 2005, 6:2049.
[10] Takasu Y, Yamada H, Tamura T, Sezutsu H, Mita K, Tsubouchi K. Insect Biochem. Mol. Biol., 2007, 37:1234.
[11] Tao W, Li M, Xie R. Macromolecular Materials and Engineering, 2005, 290:188.
[12] Cho K Y, Moon J Y, Lee Y W, Lee K G, Yeo J H, Kweon H Y, Kim K H, Cho C S. Int. J. Biol. Macromol., 2003, 32:36.
[13] Yun H, Oh H, Kim M K, Kwak H W, Lee J Y, Um I C, Vootla S K, Lee K H. Int. J. Biol. Macromol., 2013, 52:59.
[14] Jo Y N, Um I C. Int. J. Biol. Macromol., 2015, 78:287.
[15] Kurioka A, Kurioka F, Yamazaki M. Biosci. Biotechnol. Biochem., 2004, 68:774.
[16] Teramoto H, Nakajima K, Takabayashi C. Biosci. Biotechnol. Biochem., 2005, 69:845.
[17] Teramoto H, Nakajima K, Takabayashi C. Biomacromolecules, 2004, 5:1392.
[18] Aramwit P, Damrongsakkul S, Kanokpanont S, Srichana T. Biotechnol. Appl. Biochem., 2010, 55:91.
[19] Gupta D, Agrawal A, Chaudhary H, Gulrajani M, Gupta C. Journal of Cleaner Production, 2013, 52:488.
[20] Zhang Y Q. Biotechnol. Adv., 2002, 20:91.
[21] Teramoto H, Miyazawa M. Journal of Insect Biotechnology and Sericology, 2003, 72:157.
[22] Jo Y N, Park B D, Um I C. Int. J. Biol. Macromol., 2015, 81:936.
[23] Huang L, Tao K, Liu J, Qi C, Xu L, Chang P, Gao J, Shuai X, Wang G, Wang Z, Wang L. ACS Appl. Mater. Interfaces, 2016, 8:6577.
[24] Inthanon K, Daranarong D, Techaikool P, Punyodom W, Khaniyao V, Bernstein A M, Wongkham W. Stem Cells Int., 2016, 2016:5309484.
[25] Nishida A, Yamada M, Kanazawa T, Takashima Y, Ouchi K, Okada H. Int. J. Pharm., 2011, 407:44.
[26] Cao T T, Zhang Y Q. Mater. Sci. Eng. C Mater. Biol. Appl., 2016, 61:940.
[27] Aramwit P, Siritientong T, Srichana T. Waste Manag. Res., 2012, 30:217.
[28] Dash R, Ghosh S K, Kaplan D L, Kundu S C. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2007, 147:129.
[29] Aramwit P, Sangcakul A. Biosci. Biotechnol. Biochem., 2007, 71:2473.
[30] Panilaitis B, Altman G H, Chen J, Jin H J, Karageorgiou V, Kaplan D L. Biomaterials, 2003, 24:3079.
[31] Aramwit P, Kanokpanont S, De-Eknamkul W, Srichana T. J. Biosci. Bioeng., 2009, 107:556.
[32] Aramwit P, Keongamaroon O, Siritientong T, Bang N, Supasyndh O. BMC Nephrol., 2012, 13:119.
[33] Khampieng T, Aramwit P, Supaphol P. Int. J. Biol. Macromol., 2015, 80:636.
[34] Morikawa M, Kimura T, Murakami M, Katayama K, Terada S, Yamaguchi A. J. Hepatobiliary Pancreat. Surg., 2009, 16:223.
[35] Terada S, Nishimura T, Sasaki M, Yamada H, Miki M. Cytotechnology, 2002, 40:3.
[36] Terada S, Sasaki M, Yanagihara K, Yamada H. J. Biosci. Bioeng., 2005, 100:667.
[37] Takechi T, Wada R, Fukuda T, Harada K, Takamura H. Biomed. Rep., 2014, 2:364.
[38] Jagtapb S G, Khyade V B. Amer. J. Eng. Res., 2016, 5:180.
[39] Dash R, Acharya C, Bindu P C, Kundu S C. BMB Rep., 2008, 41:236.
[40] Du X, Li J, Chen Y. Biotechnology and Bioprocess Engineering, 2011, 16:438.
[41] Tsubouchi K, Igarashi Y, Takasu Y, Yamada H. Biosci. Biotechnol. Biochem., 2005, 69:403.
[42] Wang Z, Wang J, Jin Y, Luo Z, Yang W, Xie H, Huang K, Wang L. ACS Appl. Mater. Interfaces, 2015, 7:24629.
[43] Tamura Y, Nakajima K, Nagayasu K, Takabayashi C. Phytochemistry, 2002, 59:275.
[44] Liu J, Qi C, Tao K, Zhang J, Zhang J, Xu L, Jiang X, Zhang Y, Huang L, Li Q, Xie H, Gao J, Shuai X, Wang G, Wang Z, Wang L. ACS Appl. Mater. Interfaces, 2016, 8:6411.
[45] Kusurkar T S, Tandon I, Sethy N K, Bhargava K, Sarkar S, Singh S K, Das M. Sci. Rep., 2013, 3:3290.
[46] 陈忠敏(Chen Z M), 陈枭(Chen X), 庞亚妮(Pang Y N), 李江峰(Li J F), 王富平(Wang F P). 丝绸(Journal of Silk), 2015, 25.
[47] Wang Z, Zhang Y, Zhang J, Huang L, Liu J, Li Y, Zhang G, Kundu S C, Wang L. Sci. Rep., 2014, 4:7064.
[48] Kato N, Sato S, Yamanaka A, Yamada H, Fuwa N, Nomura M. Biosci. Biotechnol. Biochem., 1998, 62:145.
[49] Manosroi A, Boonpisuttinant K, Winitchai S, Manosroi W, Manosroi J. Pharm. Biol., 2010, 48:855.
[50] Eidet J R, Reppe S, Pasovic L, Olstad O K, Lyberg T, Khan A Z, Fostad I G, Chen D F, Utheim T P. Sci. Rep., 2016, 6:22671.
[51] Chlapanidas T, Farago S, Lucconi G, Perteghella S, Galuzzi M, Mantelli M, Avanzini M A, Tosca M C, Marazzi M, Vigo D, Torre M L, Faustini M. Int. J. Biol. Macromol., 2013, 58:47.
[52] Yildirimer L, Seifalian A M. Biotechnol. Adv., 2014, 32:984.
[53] Teramoto H, Kameda T, Tamada Y. Biosci. Biotechnol. Biochem., 2008, 72:3189.
[54] Chen L, Hu J, Ran J, Shen X, Tong H. RSC Adv., 2015, 5:56410.
[55] Zhao R, Li X, Sun B, Zhang Y, Zhang D, Tang Z, Chen X, Wang C. Int. J. Biol. Macromol., 2014, 68:92.
[56] Bhowmick S, Scharnweber D, Koul V. Biomaterials, 2016, 88:83.
[57] Mandal B B, Priya A S, Kundu S C. Acta Biomater., 2009, 5:3007.
[58] Napavichayanun S, Yamdech R, Aramwit P. Arch. Dermatol. Res., 2016, 308:123.
[59] Ersel M, Uyanikgil Y, Karbek Akarca F, Ozcete E, Altunci Y A, Karabey F, Cavucoglu T, Meral A, Yigitturk G, Oyku Cetin E. Med. Sci. Monit., 2016, 22:1064.
[60] 王见伟(Wang J W),宋利锋(Song L F),赵瑾(Zhao J),原续波(Yuan X B). 化学进展(Progress in Chemistry), 2015, 27:373.
[61] Migneault I, Dartiguenave C, Bertrand M J, Waldron K C. Biotechniques, 2004, 37:790.
[62] Muzzarelli R A A. Carbohydr. Polym., 2009, 77:1.
[63] Zhang Y, Liu J, Huang L, Wang Z, Wang L. Sci. Rep., 2015, 5:12374.
[64] Kurland N E, Dey T, Wang C, Kundu S C, Yadavalli V K. Adv. Mater., 2014, 26:4431.
[65] Nishida A, Naganuma T, Kanazawa T, Takashima Y, Yamada M, Okada H. Int. J. Pharm., 2011, 414:193.
[66] Kanazawa T, Shizawa Y, Takeuchi M, Tamano K, Ibaraki H, Seta Y, Takashima Y, Okada H. Pharmaceutics, 2015, 7:294.
[67] Shi L, Yang N, Zhang H, Chen L, Tao L, Wei Y, Liu H, Luo Y. Mater. Sci. Eng. C Mater. Biol. Appl., 2015, 48:533.
[68] Kurland N E, Ragland R B, Zhang A, Moustafa M E, Kundu S C, Yadavalli V K. Int. J. Biol. Macromol., 2014, 70:565.
[69] Kurland N E, Kundu J, Pal S, Kundu S C, Yadavalli V K. Soft Matter, 2012, 8:4952.
[70] Aramwit P, Bang N, Ratanavaraporn J, Ekgasit S. Nanoscale Res. Lett., 2014, 9:79.
[71] Hadipour-Goudarzi E, Montazer M, Latifi M, Aghaji A A. Carbohydr. Polym., 2014, 113:231.
[72] Yang M, Shuai Y, Zhou G, Mandal N, Zhu L, Mao C. ACS Appl. Mater. Interfaces, 2014, 6:13782.
[73] Yun H, Kim M K, Kwak H W, Lee J Y, Kim M H, Lee K H. Int. J. Biol. Macromol., 2016, 82:945.
[74] Zhang H, Deng L, Yang M, Min S, Yang L, Zhu L. Int. J. Mol. Sci., 2011, 12:3170.
[75] Dragan E S. Chem. Eng. J., 2014, 243:572.
[76] Kundu B, Kundu S C. Biomaterials, 2012, 33:7456.
[77] Zhang Q, Dong P, Chen L, Wang X, Lu S. J. Biomed. Mater. Res. A, 2014, 102:76.
[78] Guo S, Dipietro L A. J. Dent. Res., 2010, 89:219.
[79] Aramwit P, Palapinyo S, Srichana T, Chottanapund S, Muangman P. Arch. Dermatol. Res., 2013, 305:585.
[80] Siritientong T, Angspatt A, Ratanavaraporn J, Aramwit P. Pharm. Res., 2014, 31:104.
[81] Mori M, Rossi S, Ferrari F, Bonferoni M C, Sandri G, Riva F, Tenci M, Del Fante C, Nicoletti G, Caramella C. J. Pharm. Sci., 2016, 105:1188.
[82] Zhang Y Q, Tao M L, Shen W D, Zhou Y Z, Ding Y, Ma Y, Zhou W L. Biomaterials, 2004, 25:3751.
[83] Das S K, Dey T, Kundu S C. RSC Adv., 2014, 4:2137.
[84] Parisi O I, Fiorillo M, Scrivano L, Sinicropi M S, Dolce V, Iacopetta D, Puoci F, Cappello A R. Biomacromolecules, 2015, 16:3126.
[85] Gupta D, Chaudhary H, Gupta C. Journal of The Textile Institute, 2014, 106:366.
[86] Koley P, Sakurai M, Aono M. ACS Appl. Mater. Interfaces, 2016, 8:2380.
[87] Takeuchi A, Ohtsuki C, Kamitakahara M, Ogata S, Tanihara M, Miyazaki T, Yamazaki M, Furutani Y, Kinoshita H. Key Eng. Mater. Switzerland:Trans. Tech. Publications, 2005.
[88] Okazaki Y, Kakehi S, Xu Y, Tsujimoto K, Sasaki M, Ogawa H, Kato N. Biosci. Biotechnol. Biochem., 2010, 74:1534.
[89] Limpeanchob N, Trisat K, Duangjai A, Tiyaboonchai W, Pongcharoen S, Sutheerawattananonda M. J. Agric. Food Chem., 2010, 58:12519.
[90] Li Y G, Ji D F, Lin T B, Zhong S, Hu G Y, Chen S. Chin. Med. J. (Engl.), 2008, 121:2083.
[91] Li Y G, Ji D F, Chen S, Hu G Y. Alcohol Alcohol., 2008, 43:246.
[92] Chen Z, He Y, Song C, Dong Z, Su Z, Xue J. Neural Regen. Res., 2012, 7:197.
[93] Yazicioglu A, Demirag F, Alici I O, Yekeler E, Karaoglanoglu N. Thorac. Cardiovasc. Surg., 2016.
[94] Xie H, Yang W, Chen J, Zhang J, Lu X, Zhao X, Huang K, Li H, Chang P, Wang Z, Wang L. Adv. Healthc. Mater., 2015, 4:2195.
[95] Song Y, Zhang C, Zhang J, Sun N, Huang K, Li H, Wang Z, Huang K, Wang L. Acta Biomater., 2016.
[96] Yang M, Mandal N, Shuai Y, Zhou G, Min S, Zhu L. Biomed. Mater. Eng., 2014, 24:815.
[97] Yang M, Shuai Y, Zhang C, Chen Y, Zhu L, Mao C, OuYang H. Biomacromolecules, 2014, 15:1185.
[98] Wang H, Meng F, Cai Y, Zheng L, Li Y, Liu Y, Jiang Y, Wang X, Chen X. Adv. Mater., 2013, 25:5498.
[1] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[2] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[3] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[4] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[5] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[6] 宫悦, 程一竹, 胡银春. 高分子导电水凝胶的制备及在柔性可穿戴电子设备中的应用[J]. 化学进展, 2022, 34(3): 616-629.
[7] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[8] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[9] 杨宇州, 李政, 黄艳凤, 巩继贤, 乔长晟, 张健飞. MOF基水凝胶材料的制备及其应用[J]. 化学进展, 2021, 33(5): 726-739.
[10] 赵平平, 杨军星, 施健辉, 朱静怡. 基于树状大分子的SPECT成像造影剂的构建及其应用[J]. 化学进展, 2021, 33(3): 394-405.
[11] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[12] 张开宇, 高国伟, 李延生, 宋钰, 温永强, 张学记. DNA水凝胶在生物传感中的应用和发展[J]. 化学进展, 2021, 33(10): 1887-1899.
[13] 胡强强, 郭和泽, 窦红静. ZIF-8纳米颗粒的粒径调控及生物医学应用[J]. 化学进展, 2020, 32(5): 656-664.
[14] 于秋灵, 李政, 窦春妍, 赵义平, 巩继贤, 张健飞. pH敏感性智能水凝胶的设计及其应用[J]. 化学进展, 2020, 32(2/3): 179-189.
[15] 苏喜, 葛闯, 陈李, 徐溢. 基于水凝胶的细菌传感检测[J]. 化学进展, 2020, 32(12): 1908-1916.