English
新闻公告
More
化学进展 2015, Vol. 27 Issue (8): 1102-1109 DOI: 10.7536/PC150232 前一篇   后一篇

所属专题: 酶化学

• 综述与评论 •

基于蛋白质骨架的人工水解酶的理性设计

赵媛1, 曾金1, 林英武*1,2   

  1. 1. 南华大学化学化工学院 衡阳 421001;
    2. 南华大学蛋白质结构与功能实验室 衡阳 421001
  • 收稿日期:2015-02-01 修回日期:2015-03-01 出版日期:2015-08-15 发布日期:2015-06-05
  • 通讯作者: 林英武 E-mail:linlinying@hotmail.com, ywlin@usc.edu.cn
  • 基金资助:
    国家自然科学基金项目(No. 31370812)、教育部留学回国人员启动基金项目和湖南省杰出青年基金项目(No. 2015JJ1012)资助

Rational Design of Artificial Hydrolases in Protein Scaffolds

Zhao Yuan1, Zeng Jin1, Lin Yingwu*1,2   

  1. 1. School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China;
    2. Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
  • Received:2015-02-01 Revised:2015-03-01 Online:2015-08-15 Published:2015-06-05
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 31370812), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, and the Natural Science Founds for Distinguished Young Scholar of Hunan Province (No. 2015JJ1012).
蛋白质是生命体的重要组成部分,其中生物酶在生命体系中发挥至关重要的作用。蛋白质分子设计是研究生物酶结构与功能关系的重要手段。本文综述了基于蛋白质骨架的人工水解酶的理性设计与功能研究进展,包括对天然蛋白的重新利用和重新改造,基于3-股螺旋、4-股螺旋或锌指蛋白的分子设计,以及血红蛋白(如细胞色素b5和肌红蛋白突变体)水解酶催化活性的调控等,阐明了人工水解酶分子设计的基本思路与研究方法,为合理构建人工水解酶或其他生物酶提供了重要的信息。人工水解酶的理性设计进展,不但深化我们对天然酶结构-性质-反应-功能关系的认识,而且还提升我们创造具有优越功能的人工生物酶的能力。
Proteins are an important part of life, of which enzymes perform vital roles in biological systems. Rational protein design is a key approach for investigating the structure and function relationship of enzymes. This review summarizes the progresses in rational design and functional study of artificial hydrolases in protein scaffolds, including reuse of natural proteins, reconstruction of natural proteins, molecular design based on 3-α-helix, 4-α-helix or zinc-finger proteins, and fine-tuning the hydrolysis activity of heme proteins such as cytochrome b5 and myoglobin mutants. It illustrates the basic idea and approaches of artificial hydrolase design, which provides valuable clues for rational construction of artificial hydrolase or other enzymes. The progress in rational design of artificial hydrolases not only enriches our understanding of the structure-property-reactivity-function relationship of native enzymes, but also enhances our ability to construct artificial enzymes with advanced functions.

Contents
1 Introduction
2 Mechanisms of hydrolases
3 Hydrolases containing no metal ions
3.1 Reuse of natural proteins
3.2 Reconstruction of natural proteins
4 Hydrolases containing metal ions
4.1 Molecular design based on 3-α-helix
4.2 Molecular design based on 4-α-helix
4.3 Molecular design based on zinc-finger protein
5 Hydrolases containing metal complex
5.1 Explore hydrolysis activity of heme proteins
5.2 Tune hydrolysis activity of heme proteins
6 Conclusion and outlook

中图分类号: 

()
[1] Schmid A, Dordick J S, Hauer B, Kiener A, Wubbolts M, Witholt B. Nature, 2001, 409(6817): 258.
[2] 林英武(Lin Y W),黄仲贤(Huang Z X). 化学进展(Progress in Chemistry), 2006, 18(6): 794.
[3] 林英武(Lin Y W). 化学进展(Progress in Chemistry), 2010, 22(6): 1203.
[4] 林英武(Lin Y W). 化学进展(Progress in Chemistry), 2012, 24(4): 589.
[5] 林英武(Lin Y W). 化学进展(Progress in Chemistry), 2012, 24(5): 784.
[6] 林英武(Lin Y W). 化学进展(Progress in Chemistry), 2014, 26(6): 987.
[7] Lin Y W, Sawyer E B, Wang J. Chem. Asian J., 2013, 8: 2534.
[8] Lin Y W, Wang J. J. Inorg. Biochem., 2013, 129(12): 162.
[9] Lin Y W , Wang J Y, Lu Y. Sci. China Chem., 2014, 57(3): 346.
[10] Lu Y, Yeung N, Sieracki N, Marshall N M. Nature, 2009, 460: 855.
[11] Zanghellini A. Curr. Opin. Biotechnol., 2014, 29: 132.
[12] Nanda V, Koder R L. Nat. Chem., 2010, 2: 15.
[13] Du J, Sono M, Dawson J H. Coord. Chem. Rev., 2011, 255: 700.
[14] Reetz M T. Chem. Rec., 2012, 12: 391.
[15] Ueno T, Tabe H, Tanaka Y. Chem. Asian J., 2013, 8: 1646.
[16] Farid T A, Kodali G, Solomon L A, Lichtenstein B R, Sheehan M M, Fry B A, Bialas C, Ennist N M, Siedlecki J A, Zhao Z, Stetz M A, Valentine K G, Anderson J L, Wand A J, Discher B M, Moser C C, Dutton P L. Nat. Chem. Biol., 2013, 9: 826.
[17] Armstrong C T, Watkins D W, Anderson J L. Dalton Trans,. 2013, 42(9): 3136.
[18] Höcker B. Curr. Opin. Struct. Biol., 2014, 27C: 56.
[19] Petrik I D, Liu J, Lu Y. Curr. Opin. Chem. Biol., 2014, 19: 67.
[20] Watkins D W, Armstrong C T, Anderson J L. Curr. Opin. Chem. Biol., 2014, 19: 90.
[21] Oohora K, Hayashi T. Curr. Opin. Chem. Biol., 2014, 19: 154.
[22] Dürrenberger M, Ward T R. Curr. Opin. Chem. Biol., 2014, 19: 99.
[23] Shoji O, Watanabe Y. J. Biol. Inorg. Chem., 2014, 19: 529.
[24] Reig A J, Pires M M, Snyder R A, Wu Y, Jo H, Kulp D W, Butch S E, Calhoun J R, Szyperski T, Solomon E I, DeGrado W F. Nat. Chem., 2012, 4: 900.
[25] Oohora K, Kihira Y, Mizohata E, Inoue T, Hayashi T. J. Am. Chem. Soc., 2013, 135: 17282.
[26] Yeung N, Lin Y W, Gao Y G, Zhao X, Russell B S, Lei L, Miner K D, Robinson H, Lu Y. Nature, 2009, 462: 1079.
[27] Lin Y W, Yeung N, Gao Y G, Miner K D, Tian S, Robinson H, Lu Y. Proc. Natl. Acad. Sci. U. S. A., 2010, 107: 8581.
[28] Lin Y W, Yeung N, Gao Y G, Miner K D, Lei L, Robinson H, Lu Y. J. Am. Chem. Soc., 2010, 132: 9970.
[29] Tegoni M, Yu F, Bersellini M, Penner-Hahn J E, Pecoraro V L. Proc. Natl. Acad. Sci. U. S. A., 2012, 109: 21234.
[30] Miner K D, Mukherjee A, Gao Y G, Null E L, Petrik I D, Zhao X, Yeung N, Robinson H, Lu Y. Angew. Chem. Int. Ed., 2012, 51(23): 5589.
[31] Liu X, Yu Y, Hu C, Zhang W, Lu Y, Wang J. Angew. Chem. Int. Ed., 2012, 51(18):4312.
[32] Zhou Q, Hu M, Zhang W, Jiang L, Perrett S, Zhou J, Wang J. Angew. Chem. Int. Ed., 2013, 52(4): 1203.
[33] Bhagi-Damodaran A, Petrik I D, Marshall N M, Robinson H, Lu Y. J. Am. Chem. Soc., 2014, 136(34): 11882.
[34] Hu C, Chan S I, Sawyer E B, Yu Y, Wang J. Chem. Soc. Rev., 2014, 43(18): 6498.
[35] Yu F, Cangelosi V M, Zastrow M L, Tegoni M, Plegaria J S, Tebo A G, Mocny C S, Ruckthong L, Qayyum H, Pecoraro V L. Chem. Rev., 2014, 114(7): 3495.
[36] Matsuo T, Hirota S. Bioorg. Med. Chem., 2014, 22(20): 5638.
[37] Tebo A G, Pecoraro V L. Curr. Opin. Chem. Biol., 2015: 25C: 65.
[38] Pordea A. Curr. Opin. Chem. Biol., 2015, 25C: 124.
[39] Lin Y W, Nagao S, Zhang M, Shomura Y, Higuchi Y, Hirota S. Angew. Chem. Int. Ed., 2015, 54(2): 511.
[40] Zastrow M L, Peacock A F A., Stuckey J A, Pecoraro VL. Nat. Chem., 2012, 4(2): 118.
[41] Zastrow M L, Pecoraro V L. J. Am. Chem. Soc., 2013, 135(15): 5895.
[42] Zastrow M L, Pecoraro V L. Coord. Chem. Rev., 2013, 257: 2565.
[43] Zastrow M L, Pecoraro V L. Biochemistry, 2014, 53(6): 957.
[44] Cangelosi V M, Deb A, Penner-Hahn J E, Pecoraro V L. Angew. Chem. Int. Ed., 2014, 53(30):7900.
[45] Jochens H, Hesseler M, Stiba K, Padhi S K, Kazlauskas R J, Bornscheuer U T. Chembiochem, 2011, 12(10): 1508.
[46] Zemel H, Plaines D. US4764464-A, 1988.
[47] Nedrud D M, Lin H, Lopez G, Padhi S K, Legatt G A, Kaz-Lauskas R J. Chem. Sci., 2014, 5(11): 4265.
[48] Zhou X, Gao L, Yang G, Liu D, Bai A, Li B, Deng Z, Feng Y. ChemBioChem., 2015,16(3): 455.
[49] Chen Q, Luan Z J, Cheng X, Xu J H. Biochemistry, 2015, 54(9):1841.
[50] Qian Z, Fields C J, Yu Y, Lutz S. Biotechnol. J., 2007, 2: 192.
[51] Kourist R, Jochens H, Bartsch S, Kuipers R, Padhi S K, Gall M, Böttcher D, Joosten H J, Bornscheuer U T. Chembiochem., 2010,11(12):1635.
[52] Bolon D N, Mayo S L. Proc. Natl. Acad. Sci. U. S. A., 2001, 98(25): 14274.
[53] Gomis-Rüth F X. Crit. Rev. Biochem. Mol. Biol., 2008, 43(5):319.
[54] Sandal M, Paltrinieri D, Carloni P, Musiani F, Giorgetti A. Curr. Protein Pept. Sci., 2013, 14(8): 650.
[55] Jaitovich A A, Bertorello A M. Semin. Nephrol. 2006, 26(5): 386.
[56] Luan Y, Xu W. Curr. Med. Chem., 2007,14(6): 639.
[57] Fernandes C A, Borges R J, Lomonte B, Fontes M R. Biochim. Biophys. Acta., 2014, 1844(12): 2265.
[58] Kaplan J, DeGrado W.F. Proc. Natl. Acad. Sci. U. S .A., 2004, 101: 11566.
[59] Cochran F V, Wu S P, Wang W, Nanda V, Saven J G, Therien M J, DeGrado W F. J. Am. Chem. Soc., 2005, 127: 1346.
[60] Calhoun J R, Nastri F, Maglio O, Pavone V, Lombardi A, DeGrado W F. Biopolymers, 2005, 80: 264.
[61] Calhoun J R, Liu W, Spiegel K, Dal Peraro M, Klein ML, Valentine K G, Wand A J, DeGrado W F. Structure, 2008, 16: 210.
[62] Fry H C, Lehmann A, Saven J G, DeGrado W F, Therien M J. J. Am. Chem. Soc., 2010, 132:3997.
[63] Fry H C, Lehmann A, Sinks LE, Asselberghs I, Tronin A, Krishnan V, Blasie J K, Clays K, Degrado W F, Saven J G, Therien M J. J. Am. Chem. Soc., 2013, 135: 13914.
[64] Der B S, Edwards D R, Kuhlman B. Biochemistry, 2012, 51(18): 3933.
[65] Maret W. J. Inorg. Biochem., 2012,111: 110.
[66] Srivastava K R, Durani S. PloS ONE, 2014, 9(5): e96234.
[67] Wang W H, Wang Y H, Lu J X, Wang J H, Xie Y, Huang Z X. Chem. Lett., 2002, 674.
[68] Wang W H, Lu J X, Yao P, Xie Y, Huang Z X. Protein Eng., 2003,16(12): 1047.
[69] Lin Y W, You X X, Chen L S, Wu Y M. Chem. Lett., 2012, 41: 1574.
[70] Sen S, Bose T, Roy A, Chakraborti A S. Mol. Cell Biochem., 2007, 301: 251.
[71] You Y, Liu F, Du K J, Wen G B, Lin Y W. J. Mol. Model., 2014, 20(7):2358.
[72] Sun M H, Li W, Liu J H, Wen G B, Tan X, Lin Y W. RSC Adv., 2013, 3: 9337.
[73] Du J F, Li W, Li L, Wen G B, Lin Y W, Tan X. ChemistryOpen, 2015, 4:99.
[74] Zeng J, Zhao Y, Li W, Tan X, Wen G B, Lin Y W. J. Mol. Catal. B: Enzym, 2015, 111(1):9.
[75] Yan D J, Li W, Xiang Y, Wen G B, Lin Y W, Tan X. Chembiochem., 2015, 16(1): 47.
[76] Lin Y W. Biochim Biophys Acta. 2015, 1854(8): 844.
[77] Lin Y W , Dong S S, Liu J H, Nie C M, Wen G B. J. Mol. Catal. B: Enzym., 2013, 91: 25.
[78] Rajagopalan S, Wang C, Yu K, Kuzin A P, Richter F, Lew S, Miklos A E, Matthews M L, Seetharaman J, Su M, Hunt J F, Cravatt B F, Baker D. Nat. Chem. Biol., 2014, 10(5):386.
[79] Song W J, Tezcan F A. Science, 2014, 346(6216): 1525.
[1] 胡安东, 周顺桂, 叶捷. 生物杂化体介导的半人工光合作用:机理、进展及展望[J]. 化学进展, 2021, 33(11): 2103-2115.
[2] 谢超, 周波, 周灵, 吴雨洁, 王双印. 缺陷与催化[J]. 化学进展, 2020, 32(8): 1172-1183.
[3] 朱红林, 李文英, 黎挺挺, Michael Baitinger, Juri Grin, 郑岳青. CO2电还原用氮掺杂碳基过渡金属单原子催化剂[J]. 化学进展, 2019, 31(7): 939-953.
[4] 王晓娟, 刘真真, 陈奇, 王小强, 黄方. 石墨烯材料与蛋白质的相互作用[J]. 化学进展, 2019, 31(2/3): 236-244.
[5] 张冰洁, 刘倩, 周群芳, 张建清, 江桂斌. 纳米银的神经毒理学效应[J]. 化学进展, 2018, 30(9): 1392-1402.
[6] 王继乾*, 闫宏宇, 李洁, 张丽艳, 赵玉荣, 徐海*. 基于多肽自组装的人工金属酶[J]. 化学进展, 2018, 30(8): 1121-1132.
[7] 白东亚, 何军邀, 欧阳斌, 黄金, 王普. 手性芳基醇的生物催化不对称合成[J]. 化学进展, 2017, 29(5): 491-501.
[8] 孙佳, 王普, 章鹏鹏, 黄金. 甘油在微生物代谢合成及生物催化中的应用[J]. 化学进展, 2016, 28(9): 1426-1434.
[9] 赵亚男, 王梦凡, 齐崴, 苏荣欣, 何志敏. 基于肽组装凝胶的超分子模拟酶[J]. 化学进展, 2016, 28(11): 1664-1671.
[10] 万晓梅, 张川, 余定华, 黄和, 胡燚. 碳纳米管固定化酶[J]. 化学进展, 2015, 27(9): 1251-1259.
[11] 龚劲松, 李恒, 陆震鸣, 史劲松, 许正宏. 腈水解酶在医药中间体生物催化研究中的最新进展[J]. 化学进展, 2015, 27(4): 448-458.
[12] 冯旭东, 李春. 酶的改造及其催化工程应用[J]. 化学进展, 2015, 27(11): 1649-1657.
[13] 石玉刚, 党亚丽, 刘玉华, 白雪. 生物法与化学法制备硫酸软骨素[J]. 化学进展, 2014, 26(08): 1378-1394.
[14] 申刚义, 于婉婷, 刘美蓉, 崔勋. 固定化酶微反应器的制备及应用[J]. 化学进展, 2013, 25(07): 1198-1207.
[15] 颜范勇, 李楚盈, 梁小乐, 代林枫, 王猛, 陈莉*. Baeyer-Villiger氧化反应的不同催化体系[J]. 化学进展, 2013, 25(06): 900-914.
阅读次数
全文


摘要