English
新闻公告
More
化学进展 2016, Vol. 28 Issue (11): 1664-1671 DOI: 10.7536/PC160221 前一篇   后一篇

所属专题: 酶化学

• 综述与评论 •

基于肽组装凝胶的超分子模拟酶

赵亚男1, 王梦凡1,4*, 齐崴1,2,3,4*, 苏荣欣1,2,3,4, 何志敏1,2   

  1. 1. 天津大学化工学院 天津 300072;
    2. 天津大学化学工程联合国家重点实验室 天津 300072;
    3. 天津化学化工协同创新中心 天津 300072;
    4. 天津膜科学与海水淡化重点实验室 天津 300072
  • 收稿日期:2016-02-01 修回日期:2016-09-01 出版日期:2016-11-15 发布日期:2016-10-08
  • 通讯作者: 王梦凡, 齐崴 E-mail:mwang@tju.edu.cn;qiwei@tju.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21676191,21206113,21476165)和天津市应用基础研究计划(No.13JCQNC09300)资助

Supramolecular Artificial Enzyme Based on Assembling Peptide Gel

Zhao Yanan1, Wang Mengfan1,4*, Qi Wei1,2,3,4*, Su Rongxin1,2,3,4, He Zhimin1,2   

  1. 1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
    2. State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China;
    3. Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China;
    4. Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, China
  • Received:2016-02-01 Revised:2016-09-01 Online:2016-11-15 Published:2016-10-08
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21676191, 21206113, 21476165) and the Natural Science Foundation of Tianjin (No. 13JCQNC09300).
模拟酶,或称人工酶,是一类利用有机化学方法合成的比天然酶简单的非蛋白质分子。随着纳米科学和超分子技术的发展,构筑具有生物催化功能的超分子模拟酶材料已经越来越成为科学研究和应用开发领域的热点。肽组装凝胶是以多肽为基本单元,在非共价力驱动下形成的一种新型超分子组装体,相比其他功能性材料,肽凝胶的结构及生物化学性质更接近天然酶,分子本身更利于修饰改造,且生物相容性好,这些特点令其在模拟酶方面具有独特优势。本文总结了近几年肽组装凝胶模拟酶在催化水解反应、Aldol反应和氧化还原反应中的最新研究进展,探讨了肽组装程度、微观结构、超分子结构、活性中心微环境以及pH对模拟酶活性的影响,介绍了肽凝胶模拟酶的应用领域,并对目前肽组装凝胶模拟酶研究中存在的问题与发展方向进行了分析和展望。
Mimic enzyme, or artificail enzyme, is a kind of non-protein molecule which is synthesized by the organic chemical method. With the development of nanoscience and supramolecular technology, the establishment of supramolecular artificial enzyme with biocatalytic function has attracted increasingly attention in the field of scientific research and application development. Peptide-based gel is a new type of supramolecular assembly which is formed with polypeptides as the building block and driven by non-covalent forces. As a novel supramolecular material, the peptide-based gel exhibits unique advantages compared with other functional materials:the similar structural and biochemical properties to those of natural enzymes, easy to be modified and functionalized, and the good biocompatibility. These properties make peptide-based gel a ideal material to construct artificial enzyme. In this review, we summarize the characteristics of artificial enzyme based on the assembling peptide gel and introduce the recent research progress of it as the catalysts in hydrolysis, Aldol and redox reactions. The main factors which influence the catalytic activity, such as the assembly degree, structure, active-site microenvironment and pH, are also discussed. Some examples are provided to illustrate the protential application of peptide-based artificial enzyme. Finally, the problems and prospective tendency are presented.

Contents
1 Introduction
2 Reaction types catalyzed by peptide-based artificial enzyme
2.1 Hydrolysis reaction
2.2 Aldol reaction
2.3 Redox reaction
3 Influence factors on the activity of peptide-based artificial enzyme
3.1 Assembly degree
3.2 Microstructure
3.3 Supramolecular structrue
3.4 Active-site microenvironment
3.5 pH
4 Application of peptide-based artificial enzyme
5 Conclusion

中图分类号: 

()
[1] Kirby A J. Angew. Chem. Int. Edit., 1996, 35:706.
[2] Motherwell W B, Bingham M J, Six Y. Tetrahedron, 2001, 57:4663.
[3] Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen P W N M. Chem. Soc. Rev., 2014, 43:1734.
[4] Wiester M J, Ulmann P A, Mirkin C A. Angew. Chem. Int. Edit., 2011, 50:114.
[5] Wang Y, Xu H, Ma N, Wang Z, Zhang X, Liu J, Shen J. Langmuir, 2006, 22:5552.
[6] Yu S, Yin Y, Zhu J, Huang X, Luo Q, Xu J, Shen J, Liu J. Soft Matter, 2010, 6:5342.
[7] Jin Q, Zhang L, Cao H, Wang T, Zhu X, Jiang J, Liu M. Langmuir, 2011, 27:13847.
[8] Escuder B, Rodriguez-Llansola F, Miravet J F. New J. Chem., 2010, 34:1044.
[9] Yan X, Zhu P, Li J. Chem. Soc. Rev., 2010, 39:1877.
[10] Gao X, Matsui H. Adv. Mater., 2005, 17:2037.
[11] Schneider F. Angew. Chem. Int. Edit., 1978, 17:583.
[12] Guler M O, Stupp S I. J. Am. Chem. Soc., 2007, 129:12082.
[13] Zhang C, Xue X, Luo Q, Li Y, Yang K, Zhuang X, Jiang Y, Zhang J, Liu J, Zou G. ACS Nano, 2014, 8:11715.
[14] Huang Z, Guan S, Wang Y, Shi G, Cao L, Gao Y, Dong Z, Xu J, Luo Q, Liu J. J. Mater. Chem. B., 2013, 1:2297.
[15] 吕昱琦(Lv Y Q), 王梦凡(Wang M F), 齐威(Qi W), 苏荣欣(Su R X), 何志敏(He Z M). 高等学校化学学报(Chem. J. Chinese. U.), 2015, 36:1304.
[16] Wang M, Lv Y, Liu X, Qi W, Su R, He Z. ACS Appl. Mater. Inter., 2016, 8:14133.
[17] Rufo C M, Moroz Y S, Moroz O V, Stöhr J, Smith T A, Hu X, Degrado W F, Korendovych I V. Nat. Chem., 2014, 6:303.
[18] Font D, Sayalero S, Bastero A, Jimeno C, Pericàs M A. Org. Lett., 2008, 10:337.
[19] List B, Lerner R A, Barbas C F. J. Am. Chem. Soc., 2000, 122:2395.
[20] Rodriguez-Llansola F, Escuder B, Miravet J F. Org. Biomol. Chem., 2009, 7:3091.
[21] Rodríguez-Llansola F, Miravet J F, Escuder B. Chem-Eur. J., 2010, 16:8480.
[22] Diaz-Oltra S, Berdugo C, Miravet J F, Escuder B. New J. Chem., 2015, 39:3785.
[23] Rodriguez-Llansolu F, Escuder B, Miravet J F. J. Am. Chem. Soc., 2009, 131:11478.
[24] Berdugo C, Miravet J F, Escuder B. Chem. Commun., 2013, 49:10608.
[25] Berduyo C, Escuder B, Miravet J F. Org. Biomol. Chem., 2015, 13:592.
[26] Lee K S, Parquette J R. Chem. Commun., 2015, 51.
[27] Wang Q, Yang Z, Zhang X, Xiao X, Chang C K, Xu B. Angew. Chem. Int. Edit., 2007, 46:4285.
[28] Kim M C, Lee S Y. Nanoscale, 2015, 7:17063.
[29] Huang Z, Luo Q, Guan S, Gao J, Wang Y, Zhang B, Wang L, Xu J, Dong Z, Liu J. Soft Matter, 2014, 10:9695.
[30] Overstreet M F, Healy A F, Neath I. New J. Chem., 2015, 39:3785.
[31] Rodriguez-Llansola F, Escuder B, Hamley I W, Hayes W, Miravet J F. Soft Matter, 2012, 8:8865.
[32] Maeda Y, Fang J, Ikezoe Y, Pike D H, Nanda V, Matsui H. PloS One, 2016, 11:1.
[33] Singh N, Conte M P, Ulijn R V, Miravet J F, Escuder B. Chem. Commun., 2015, 51:13213.
[34] Gulseren G, Yasa I C, Ustahuseyin O, Tekin E D, Tekinay A B, Guler M O. Biomacromolecules, 2015, 16:2198.
[35] Kim J H, Nam D H, Lee Y W, Nam Y S, Park C B. Small, 2014, 10:1272.[FL)] [ST] [WT] [LM]
[1] 曹新华, 韩晴晴, 高爱萍, 王桂霞. 气态酸和有机胺响应的超分子凝胶[J]. 化学进展, 2021, 33(9): 1538-1549.
[2] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[3] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[4] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[5] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[6] 杨宇州, 李政, 黄艳凤, 巩继贤, 乔长晟, 张健飞. MOF基水凝胶材料的制备及其应用[J]. 化学进展, 2021, 33(5): 726-739.
[7] 胡安东, 周顺桂, 叶捷. 生物杂化体介导的半人工光合作用:机理、进展及展望[J]. 化学进展, 2021, 33(11): 2103-2115.
[8] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[9] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[10] 张开宇, 高国伟, 李延生, 宋钰, 温永强, 张学记. DNA水凝胶在生物传感中的应用和发展[J]. 化学进展, 2021, 33(10): 1887-1899.
[11] 陈香李, 刘凯强, 房喻. 分子凝胶:从结构调控到功能应用[J]. 化学进展, 2020, 32(7): 861-872.
[12] 侯晨, 陈文强, 付琳慧, 张素风, 梁辰. 共价有机框架材料在固定化酶及模拟酶领域的应用[J]. 化学进展, 2020, 32(7): 895-905.
[13] 李健, 张恩爽, 刘圆圆, 黄红岩, 苏岳锋, 李文静. 超低密度气凝胶的制备及应用[J]. 化学进展, 2020, 32(6): 713-726.
[14] 张鹏, 郭心洁, 张倩, 丁彩凤. 有机染料聚集在光化学传感中的应用[J]. 化学进展, 2020, 32(2/3): 286-297.
[15] 于秋灵, 李政, 窦春妍, 赵义平, 巩继贤, 张健飞. pH敏感性智能水凝胶的设计及其应用[J]. 化学进展, 2020, 32(2/3): 179-189.
阅读次数
全文


摘要