English
新闻公告
More
化学进展 2015, Vol. 27 Issue (2/3): 267-274 DOI: 10.7536/PC140938 前一篇   后一篇

所属专题: 酶化学

• 综述与评论 •

纳米金生物共轭探针在酶活检测中的应用

田丹碧*1, 张卫1, 汤燕1, 江凌2, 刘佳1, 胡燚3   

  1. 1. 南京工业大学理学院 南京 211816;
    2. 南京工业大学食品与轻工学院 南京 211816;
    3. 南京工业大学材料化学工程国家重点实验室 南京 210009
  • 收稿日期:2014-09-01 修回日期:2014-11-01 出版日期:2015-03-15 发布日期:2014-12-22
  • 通讯作者: 田丹碧 E-mail:danbi@njtech.edu.cn
  • 基金资助:

    江苏省自然科学基金项目(No.BK2012822),国家杰出青年科学基金项目(No.21225626),国家高技术研究发展计划(863)项目(No.2012AA021700)和国家青年自然科学基金(No.21106064).

Bioconjugate Probe for Enzyme Activity Based on the Gold Nanoparticles

Tian Danbi*1, Zhang Wei1, Tang Yan1, Jiang Ling2, Liu Jia1, Hu Yi3   

  1. 1. College of Science, Nanjing Tech University, Nanjing 211816, China;
    2. College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China;
    3. State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
  • Received:2014-09-01 Revised:2014-11-01 Online:2015-03-15 Published:2014-12-22
  • Supported by:

    The work was supported by the Natural Science Foundation of Jiangsu Province, China (No. BK2012822), the National Science Foundation for Distinguished Young Scholars of China (No. 21225626), the National High Technology Research and Development Program of China (No. 2012AA021700) and the National Natural Science Foundation of China for Young Scholars (No. 21106064).

基于纳米生物共轭的酶活探针由于纳米材料的独特光电及电化学性质,多年来已经进行了广泛的研究。本综述总结了纳米金生物共轭探针在检测酶活性方面的研究成果,依次讨论了比色法、荧光法以及其他的方法,对其独特的设计进行了解释并讨论了各方法的优缺点。最后,简要指出了其发展的方向以及成功应用于实际应用时所存在的障碍。

The enzymatic probe based on nano-bioconjugate have been studied extensively for many years for their novel electronic, photonic and electrochemical properties. This review summarizes major advances in the gold nanoparticles(GNPs) biocongjugate probes to detect enzyme activity. This is followed by a discussion of the assays in colorimetric, fluorescence and other assays. Throughout the review, a detailed explanation of the unique designs will be presented, and the benefits and shortcomings of these approaches will be highlighted. The review concludes with a brief perspective on future research directions, and remaining barriers that must be overcome for the successful application of these technologies.

Contents
1 Introduction
2 Principle of enzyme activity detection based on GNPs
2.1 Colorimetric assays
2.2 FRET-based assays
2.3 Other assays
3 Neglected enzymes in the field of sensors
4 Conclusion

中图分类号: 

()

[1] Schmid A, Dordick J S, Hauer B, Kiener A, Wubbolts M, Witholt B. Nature, 2001, 409: 258.
[2] 王楠(Wang N),徐淑坤(Xu S K),王文星(Wang W X). 化学进展(Progress in Chemistry),2007, 19(2/3): 408.
[3] Reymond J L, Fluxa V S, Maillard N. Chem. Commun., 2008, 46.
[4] Baron R, Zayats M, Willner I. Anal. Chem., 2005, 77: 1566.
[5] Wang Z, Levy R, Fernig D G, Brust M. J. Am. Chem. Soc., 2006, 128: 2214.
[6] Oishi J, Asami Y, Mori T, Kang J H, Niidome T, Katayama Y. Biomacromolecules, 2008, 9: 2301.
[7] Zhao W A, Lam J C F, Chiuman W, Brook M A, Li Y. Small, 2008, 4: 810.
[8] Wang M, Gu X G, Zhang G X, Zhang D Q, Zhu D B. Langmuir, 2009, 25: 2504.
[9] Zhang L, Zhao J, Jiang J, Yu R. Chem. Commun., 2012, 48: 10996.
[10] Zeng Z, Mizukami S, Kikuchi K. Anal. Chem., 2012, 84: 9089.
[11] Ibabe G G, Möller M, Pavlov V. Anal. Chem., 2012, 84: 8033.
[12] Malashikhina N, Ibabe G G, Pavlov V. Anal. Chem., 2013, 85: 6866.
[13] Saa L, Mato J M, Pavlov V. Anal. Chem., 2012, 84: 8961.
[14] Saa L, Virel A, Lopez J S, Pavlov V. Chem. -Eur. J., 2010, 16: 6187.
[15] Hayat A, Andreescu S. Anal. Chem., 2013, 85: 10028.
[16] Rosi N L, Mirkin C A. Chem. Rev., 2005, 105: 1547.
[17] Liu J W, Cao Z H, Lu Y. Chem. Rev., 2009, 109: 1948.
[18] Li D, Song S P, Fan C H. Acc. Chem. Res., 2010, 43: 631.
[19] Chen X Y, Gambhir S S, Cheon J W. Acc. Chem. Res., 2011, 44: 841.
[20] Miranda O R, Li X, Garcia-Gonzalez L, Zhu Z J, Yan B, Bunz U H F, Rotello V M. J. Am. Chem. Soc., 2011, 133: 9650.
[21] Woo J R, Lim D K, Nam J M. Small, 2011, 7: 648.
[22] Guarise C, Pasquato L, de Filippis V, Scrimin P. Proc.Natl. Acad. Sci. U.S. A., 2006, 103: 3978.
[23] Xu X Y, Han M S, Mirkin C A. Angew. Chem., 2007, 119: 3538.
[24] Song G T, Chen C, Ren J S, Qu X G. ACS Nano, 2009, 3: 1183.
[25] Liu R R, Liew R S, Zhou J, Xing B G. Angew. Chem. Int. Ed., 2007, 46: 8799.
[26] Zhen Z, Tang L J, Long H X, Jiang J H. Anal. Chem., 2012, 84: 3614.
[27] Liu T, Zhao J, Zhang D M, Li G X. Anal. Chem., 2009, 82: 229.
[28] Wang J S, Wu L, Ren J S, Qu X G. Small, 2012, 8: 259.
[29] Aili D, Mager M, Roche D, Stevens M M. Nano Lett., 2010, 11: 1401.
[30] Li Y, Liu B, Li X, Wei Q. Biosens. Bioelectron., 2010, 25: 2543.
[31] 范 霄(Fan X), 李艳艳(Li Y Y), 刘迎亚(Liu Y Y),曹昌盛(Cao C S),李海涛(Li H T).化学进展(Progress in Chemistry), 2014, 26(12): 1987.
[32] Hutter E, Maysinger D. Trends Pharmacol. Sci., 2013, 34: 497.
[33] Xia X H, Yang M X, Oetjen L K, Zhang Y, Li Q G, Chen J Y, Xia Y N. Nanoscale, 2011, 3: 950.
[34] Huang X Y, Ren J C. Anal. Chim. Acta, 2011, 686: 115.
[35] Algar W R, Tavares A J, Krull U J. Anal. Chim. Acta, 2010, 673: 1.
[36] Dai H C, Shi Y, Wang Y L. Sun Y J, Hu J T, Ni P J, Li Z. Biosens. Bioelectron., 2014, 53: 76
[37] Zhang R, Zhao D X, Ding H G, Huang Y X, Zhong H Z, Xie H Y. Biosens. Bioelectron., 2014, 56: 51.
[38] Pavlov V. Part. Part. Syst. Charact., 2014, 31: 36.
[39] Lee S, Cha E J, Park K, Lee S Y, Hong J K, Sun I C, Kim S Y, Choi K, Kwon I C, Kim K Y, Choi K, Kwon I C, Kim K, Ahn C H. Angew. Chem., 2008, 120: 2846.
[40] Ingram A, Byers L, Faulds K, Moore B D, Graham D. J. Am. Chem. Soc., 2008, 130: 11846.
[41] Mu C J, LaVan D A, Langer R S, Zetter B R. ACS Nano, 2010, 4: 1511.
[42] Oishi M, Tamura A, Nakamura T, Nagasaki Y. Adv. Funct.Mater., 2009, 19: 827.
[43] Yu A M, Liang Z J, Cho J H, Caruso F. Nano Lett., 2003, 3: 1203.
[44] Xiao Y, Patolsky F, Katz K, Hainfeld J F, Willner I. Science, 2003, 299: 1877.
[45] Astuti Y, Palomares E, Haque S A, Durrant J R. J. Am. Chem. Soc., 2005, 127: 15120.
[46] Park S J, Taton T A, Mirkin C A. Science, 2002, 295: 1503.
[47] Xu S J, Liu Y, Wang T H, Li J H. Anal. Chem., 2010, 82: 9566.
[48] Koteshwara R K, Vengatajalabathy G K. Electrochim. Acta, 2012, 78: 109.
[49] Kim Y P, Oh E, Oh Y H, Moon D W, Lee T G, Kim H S. Angew. Chem. Int. Ed., 2007, 46: 6816.
[50] Zhao Z, Zhou X M, Xing D. Biosens. Bioelectron., 2012, 31: 299.
[51] Kitazaki H, Mori T, Kang J H, Niidome T, Murata M, Hashizume M, Katayama Y. Colloids Surf. B, 2012, 99: 7.
[52] Ruan C M, Wang W, Gu B H. Anal. Chem., 2006, 78: 3379.
[53] Pan Y L, Guo M L, Nie Z, Huang Y, Peng Y, Liu A F, Qing M, Yao S Z. Chem. Commun., 2012, 48: 997.
[54] Free P, Shaw C P, Levy R. Chem. Commun., 2009, 33: 5009.
[55] Zhen S J, Li Y F, Huang C Z, Long Y F. Talanta, 2008, 76: 230.
[56] Mahmoud K A, Luong J H T. Anal. Chem., 2008, 80: 7056.
[57] Jiang T T, Liu R R, Huang X F, Feng H J, Teo W L, Xing B G. Chem. Commun., 2009, 15: 1972.
[58] Zhang L L, Zhao J J, Jiang J H, Yu R P. Chem. Commun., 2012, 48: 10996.
[59] Brennan J L, Kanaras A G, Nativo P, Tshikhudo T R, Rees C, Fernandez L C, Dirvianskyte N, Razumas V, Skjt M, Svendsen A, Jørgensen C I, Schweins R, Zackrisson M, Nylander T, Brust M, Barauskas J. Langmuir, 2010, 26: 13590.
[60] Hasan F, Shah A A, Hameed A. Biotechnol. Adv., 2009, 27: 782.
[61] Beisson F, Tiss A, Rivière C, Verger R. Eur. J. Lipid Sci. Technol., 2000, 102: 133.
[62] Valincius G, Ignatjev I, Niaura G, Kazemekaite M, Talaikyte Z, Razumas V, Svendsen A. Anal. Chem., 2005, 77: 2632.
[63] Dellamora-Ortiz G M, Martins R C,Rocha W L. Appl. Biochem., 1997, 26: 31.
[64] O'Leary W M, Weld J T. J. Bacteriol., 1964, 88: 1356.
[65] Plou F, Ferrer M, Nuero O, Calvo M, Alcalde M, Reyes F, Ballesteros A. Biotechnol. Tech., 1998, 12: 183.
[66] Zhang W, Tang Y, Liu J, Jiang L, Huang W, Huo F W, Tian D B. J. Agric. Food Chem., 2014, DOI: 10.1021/jf505339q.

[1] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[2] 冯海弟, 赵璐, 白云峰, 冯锋. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1878.
[3] 田丹碧, 吴胜男, 张浩, 江凌, 霍峰蔚. 荧光内滤效应技术在生物检测和疾病标志上的应用[J]. 化学进展, 2019, 31(2/3): 413-421.
[4] 方维娜, 鲁爽, 王丽华, 樊春海, 柳华杰. 纳米金三角片的合成及应用[J]. 化学进展, 2017, 29(5): 459-466.
[5] 王珍珍, 翟尚儒, 翟滨, 肖作毅, 安庆大. 基于对硝基苯酚还原模型反应的纳米金催化材料[J]. 化学进展, 2014, 26(0203): 234-247.
[6] 江龙, 王清叶, 崔文娟. 金纳米颗粒的细胞毒性和促细胞生长作用[J]. 化学进展, 2013, 25(10): 1631-1641.
[7] 张金堂 虞辰敏 汪苏靖 汪志勇. 纳米金属催化在偶联反应中的应用*[J]. 化学进展, 2010, 22(07): 1482-1489.
[8] 宋海岩 李钢 王祥生. 多孔材料负载金催化剂的制备与应用*[J]. 化学进展, 2010, 22(04): 573-579.
[9] 胡胜亮 白培康 孙景 曹士锐. 荧光碳纳米颗粒:新进展和技术挑战*[J]. 化学进展, 2010, 22(0203): 345-351.
[10] 舒建华,仇伟,郑少琴. 聚苯胺/纳米金复合材料[J]. 化学进展, 2009, 21(05): 1015-1022.
[11] 徐峰,彭长兰,吕宏霞. 多糖在金属纳米材料合成中的应用[J]. 化学进展, 2008, 20(0203): 273-279.
[12] 杨小超,钱俊臻,万巧玲,莫志宏. 金纳米团簇功能化及其在生物医学中的应用[J]. 化学进展, 2007, 19(05): 689-694.
[13] 王楠,徐淑坤,王文星. 纳米金生物探针及其应用[J]. 化学进展, 2007, 19(0203): 408-413.
[14] 赵秀丽,丁小斌,郑朝晖,彭宇行,田春蓉,王建华,龙新平. 纳米金粒子/高分子复合物[J]. 化学进展, 2005, 17(05): 847-853.
[15] 杨缜. 有机介质中酶催化的基本原理[J]. 化学进展, 2005, 17(05): 924-930.