English
新闻公告
More
化学进展 2016, Vol. 28 Issue (5): 628-636 DOI: 10.7536/PC160141 前一篇   后一篇

• 综述与评论 •

DNA水凝胶的制备及生物应用

宋萍, 叶德楷, 宋世平, 王丽华, 左小磊*   

  1. 中国科学院上海应用物理研究所 上海 201800
  • 收稿日期:2016-01-01 修回日期:2016-02-01 出版日期:2016-05-15 发布日期:2016-03-25
  • 通讯作者: 左小磊 E-mail:zuoxiaolei@sinap.ac.cn
  • 基金资助:
    国家自然科学基金项目(No.21422508)

Preparation and Biological Applications of DNA Hydrogel

Song Ping, Ye Dekai, Song Shiping, Wang Lihua, Zuo Xiaolei*   

  1. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • Received:2016-01-01 Revised:2016-02-01 Online:2016-05-15 Published:2016-03-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21422508).
DNA具有良好的生物相容性、生物可降解性、分子识别特性、纳米尺寸可控及特异编码等特性。近年来,DNA扮演了多种角色,不仅仅是作为生物体系的遗传物质,同样作为生物材料被用于纳米结构的构建。DNA水凝胶既保持了DNA本来的生物特性又兼具普通凝胶的特性,比如形状可塑性、一定的机械强度、输送物质等特性。DNA水凝胶按照凝胶形成化学键的类型可以分为共价键形成的化学凝胶和非共价键形成的物理凝胶; DNA水凝胶中可以引入特异性响应不同刺激的基团或者序列,从而实现对不同刺激的灵敏性响应进而拓宽DNA水凝胶的应用范围。按照刺激响应性分类可分为pH敏感型、光敏感型、温度敏感型和小分子敏感型等水凝胶。DNA水凝胶的这些特有的性质很好地将DNA纳米技术和生物技术连接起来,为其应用提供了广阔的前景。DNA水凝胶作为一种具有智能响应的材料也越来越多地被应用到生物传感、药物输送、三维细胞培养等方面。本文主要综述了DNA 水凝胶的分类以及近几年来DNA水凝胶中的不同刺激响应型DNA水凝胶的制备及其生物应用,最后对其以后的研究前景进行了展望。
DNA possesses characteristics such as excellent biocompatibility, biodegradation, molecular recognition ability, nanoscale controllability and programmability. In recent decades, DNA has taken on an assortment of diverse roles, not only as the central genetic molecule in biological systems but also as generic materials for nanoscale engineering. DNA hydrogel combines the characteristics both from DNA and hydrogel, such as controllable shape, high mechanical strength, materials delivery. The hydrogel formation includes chemical method based formation via covalent bond and physical method based formation via non covalent bond. DNA hydrogel can combine with perssad, molecule or DNA sequence which can be sensitive to incitant stimulating factor in order to expand the application of DNA hydrogel. DNA hydrogel can be sensitive to stimuli-response, such as pH, light, temperature and small molecules. These novel DNA hydrogels provide a natural bridge between nanotechnology and biotechnology, and this also leads DNA hydrogel to far-ranging real-world applications. Because of this, DNA hydrogel as a smart material has been widely used in biosensor, drug delivery, and three-dimensional cell culture. In this review, we summarize the classification of DNA hydrogel and then give the stimuli-response DNA hydrogel and its biological application. Also, the development prospect of DNA hydrogel is demonstrated.

Contents
1 Introduction
2 Formation mechanism of DNA hydrogel
2.1 Chemical method based DNA hydrogel formation
2.2 Physical method based DNA hydrogel formation
3 Stimuli-responsive DNA hydrogel
3.1 pH-responsive DNA hydrogel
3.2 Photo-responsive DNA hydrogel
3.3 Temperature-responsive DNA hydrogel
3.4 Molecule-responsive DNA hydrogel
4 Applications
4.1 Biosensor
4.2 Drug delivery
4.3 3D cell culture
5 Conclusion and outlook

中图分类号: 

()
[1] 王镜岩(Wang J Y),朱圣庚(Zhu S J),徐长法(Xu C F). 生物化学(Biochemistry), 北京:高等教育出版社(Beijing:High Education Press), 2002.
[2] Seeman N C. J. Theor. Biol., 1982, 99: 237.
[3] Erben C M, Goodman R P, Turberfield A J. Angew. Chem. Int. Ed., 2006, 45: 7414.
[4] Lin C, Liu Y, Yan H. Biochemistry, 2009, 48: 1663.
[5] Zhang F, Nangreave J, Liu Y, Yan H. J. Am. Chem. Soc., 2014,136: 11198.
[6] Chen X, Zhou G B, Song P, Wang J J, Gao J M, Lu J, Fan C H, Zuo X L. Anal. Chem., 2014, 86(15): 1337
[7] White R J, Plaxco K W. Anal. Chem. 2009, 82: 73.
[8] Das J, Ivanov I, Montermini L, Rak J, Sargent E H, Kelley S O. Nat. Chem., 2015, 7: 569.
[9] Shen J, Li Y, Gu H, Xia F, Zuo X. Chem. Rev., 2014, 114(15): 7631.
[10] Yao G B, Li J, Chao J, Pei H, Liu H, Zhao Y, Shi J Y, Huang Q, Wang L H, Huang W, Fan C H. Angew. Chem. Int. Ed., 2015, 54: 2966.
[11] Yan J, Hu C, Wang P, Zhao B, Ouyang X Y, Zhou J, Liu R, He D N, Fan C H, Song S P. Angew. Chem. Int. Ed., 2015, 54: 2431.
[12] Pei H, Liang L, Yao G B, Li J, Huang Q, Fan C H. Angew. Chem. Int. Ed., 2012, 51: 9020.
[13] Pei H, Wan Y, Li J, Hu H Y, Su Y, Huang Q, Fan C H. Chem. Commun., 2011, 47: 6254.
[14] Lu N, Pei H, Ge Z L, Simmons Chad R, Yan H, Fan C H. J. Am. Chem. Soc., 2012, 134: 13148.
[15] Amodio A, Zhao B, Porchetta A, Idili A, Castronovo M, Fan C H, Ricci F. J. Am. Chem. Soc., 2014, 136(47): 16469.
[16] 葛志磊(Ge Z L), 樊春海(Fan C H), Yan Hao. 科学通报(Chinese Science Bulletin), 2014, 59(2): 146.
[17] Pei H, Zuo X L, Pan D, Shi J, Huang Q, Fan C H. NPG Asia. Mater., 2013, 5: e51.
[18] Sadowski J P, Calvert C R, Zhang D Y, Pierce N A, Yin P. ACS Nano, 2014, 8: 3251.
[19] Zhang D Y, Seelig G. Nat. Chem., 2011, 3: 103.
[20] Zhang D Y. J. Am. Chem. Soc., 2011, 133: 1077.
[21] Zhang D Y, Chen S X, Yin P. Nat. Chem., 2012, 4: 208.
[22] Chen S X, Zhang D Y, Seeling G. Nat. Chem., 2013, 5: 782.
[23] Miwa Y, Zinchenko A, Lopatina L I, Sergeyev V G, Murata S. Polym. Int., 2014, 63(9), 1566.
[24] Liedl T, Dietz H, Yurke B, Simmel F. Small, 2007, 3: 1688.
[25] 王萍(Wang P), 葛志磊(Ge Z L), 裴昊(Pei H), 王丽华(Wang L H), 樊春海(Fan C H). 化学学报(Act Chim. Sinica), 2012, 70: 2127.
[26] 刘刚(Liu G), 万莹(Wan Y), 邹子英(Zou Z Y),任淑贞(Ren S Z), 樊春海(Fan C H). 分析化学(Chinese J. Anal. Chem.), 2011, 39(7): 953.
[27] 闻艳丽(Wen Y L), 林美华(Lin M H), 裴昊(Pei H), 鲁娜(Lu N), 樊春海(Fan C H). 化学进展(Progress in Chemistry), 2012, 9: 1657.
[28] 葛志磊(Ge Z L), 裴昊(Pei H), 王丽华(Wang L H), 宋世平(Song S P), 樊春海(Fan C H), 中国科学:化学(Scientia Sinica Chimical), 2011, 41(10): 1666.
[29] Ke G, Zhu Z, Wang W, Zou Y, Guan Z, Jia S, Zhang H, Wu X, Yang C J. ACS Appl. Mater. Interfaces, 2014, 6: 15329.
[30] Song Y, Zhu Z, An Y, Zhang W, Zhang H, Liu D, Yu C, Duan W, Yang C J. Anal. Chem., 2013, 85: 4141.
[31] Ensslen P, Gärtner S, Glaser K, Colsmann A, Wagenknecht H A. Angew. Chem. Int. Ed., 2016, 55: 1904.
[32] Halstead J M, Lionnet T, Wilbertz J H, Wippich F, Ephrussi A, Singer R H, Chao J A. Science, 2015, 347: 1367.
[33] Zhang P, Wu X, Yuan R, Chai Y. Anal. Chem. 2015, 86(6): 3202.
[34] Fu C, Xu W, Wang H, Ding H, Liang L, Cong M, Xu S. Anal. Chem., 2014, 86(23): 11494.
[35] Zhu G, Zheng J, Song E, Donovan M, Zhang K, Liu C, Tan W. Proc. Natl. Acad. Sci. U. S. A., 2013, 110: 7998.
[36] Tram K, Kanda P, Salena B J, Huan S Y, Li Y F. Angew. Chem. Int. Ed., 2014, 53: 12799.
[37] Wang F A, Liu X Q, Willner I. Angew. Chem. Int. Ed., 2014, 53: 2.
[38] Zuo X L, Xia F, Xiao Y, Plaxco K W. J. Am. Chem. Soc., 2010, 132: 1816.
[39] Wieduwild R, Krishnan S, Chwalek K, Boden A, Nowak M, Drechsel D, Werner C, Zhang Y X. Angew. Chem. Int. Ed., 2015, 54: 3962.
[40] Kimberly G. Olsen, David J. Ross, Michael J. Tarlov. Anal.Chem., 2002,74: 1436.
[41] Nçll T, Schçnherr H, Wesner D, Schopferer M, Paululat T, Nçll G. Angew. Chem. Int. Ed., 2014, 126: 8468.
[42] Okay O. J. Polym. Sci. Pol. Phys., 2011, 49: 551.
[43] Seliktar D, Science, 2012, 336: 1124.
[44] Yang D Y, Hartman M R, Derrien T L, Hamada S, An D, Yancey K G, Cheng R, Ma M L, Luo D. Acc. Chem. Res., 2014, 47: 1902.
[45] Cheng E, Xing Y, Chen P, Yang Y, Sun Y, Zhou D, Xu L, Fan Q, Liu D. Angew. Chem. Int. Ed., 2009, 121: 7796.
[46] Um S H, Lee J B, Park N, Kwon S Y, Umbach C C, Luo D. Nat. Mater., 2006, 5: 797.
[47] Lee J B, Peng S, Yang D, Roh Y H, Funabashi H, Park N, Rice E J, Chen L, Long R, Wu M, Luo D. Nat. Nanotechnol., 2012, 7: 816.
[48] Zhang L, Lei J, Liu L, Li C, Ju H X. Anal. Chem., 2013, 85(22): 11077.
[49] Li C, Rowland M J, Shao Y, Cao T Y, Chen C, Jia H Y, Zhou X, Yang Z Q, Scherman O A, Liu D S. Adv. Mater., 2015, 27: 3298.
[50] Wang F, Lu C H, Willner I. Chem. Rev., 2014, 114: 2881.
[51] Lin D C, Yurke B, Langrana N A. J. Biomech. Eng., 2004, 126(1): 104.
[52] Xing Y, Cheng E, Yang Y, Chen P, Zhang T, Sun Y, Yang Z, Liu D. Adv. Mater., 2011, 23: 1117.
[53] Topuz F, Okay O. Macromolecules, 2008, 41: 8847.
[54] Jiang F, Yurke B, Firestein B, Langrana N. Ann. Biomed. Eng., 2008, 36:1565.
[55] Guo W, Lu C H, Orbach R, Wang F, Qi X J, Cecconello A, Seliktar D, Willner I. Adv. Mater., 2015, 27: 73.
[56] Guo W, Lu C H, Qi X J, Orbach R, Fadeev M, Yang H H, Willner I. Angew. Chem. Int. Ed., 2014, 53: 10134.
[57] Peng L, You M, Yuan Q, Wu C, Han D, Chen Y, Zhong Z, Xue J, Tan W. J. Am. Chem. Soc., 2012, 134: 12302.
[58] Kahn J S, Trifonov A, Cecconello A, Guo W, Fan C, Willner I. Nano Lett., 2015, 15: 7773.
[59] Huang Y, Ma Y, Chen Y, Wu X, Fang L, Zhu Z, Yang C J. Anal. Chem., 2014, 86: 11434.
[60] He X, Wei B, Mi Y. Chem. Commun., 2010, 46: 6308.
[61] Wei X, Tian T, Jia S, Zhu Z, Ma Y, Sun J, Lin Z, Yang C J. Anal. Chem., 2015, 87: 4275.
[62] Zhu Z, Wu C, Liu H, Zou Y, Zhang X, Kang H, Yang C J, Tan W. Angew. Chem. Int. Ed., 2010, 122: 1070.
[63] Lee H Y, Jeong H, Jung Y, Jang B, Chang S Y, Lee H, Lee H. Adv. Mater., 2015, 27: 3513.
[64] Baeissa A, Dave Neeshma, Brendan D. Smith, Liu J W. ACS Appl. Mater. Interfaces, 2010, 2: 3594.
[65] Nishikawa M, Rattanakiat S, Takakura Y. Adv. Drug Deliver. Rev., 2010, 62: 626.
[66] Muro S. Adv. Funct. Mater., 2014, 24: 2899.
[67] Grünweller A, Wyszko E, Bieber B, Jahnel R, Erdmann V A, Kurreck J. Nucleic. Acids. Res., 2003, 31: 3185.
[68] Sheehan J P, Lan H C. Blood, 1998, 92: 1617.
[69] Brown D A, Kang S H, Gryaznov S M, DeDionisio L. J. Biol.Chem., 1994, 269: 26801.
[70] Levin A A. Biochim. Biophys. Acta., 1999, 1489: 69.
[71] Henry S P, Beattie G, Yeh G, Chappel A, Giclas P, Mortari A, Jagels M A, Kornbrust D J, Levin A A. Int. Immunopharmacol., 2002, 2: 1657.
[72] Mohri K, Nishikawa M, Takahashi N, Shiomi T, Matsuoka N, Ogawa K, Endo M, Hidaka K, Sugiyama H, Takahashi Y, Takakura Y. ACS Nano, 2012, 6: 5931.
[73] Song J, Im K, Hwang S, Hur J, Nam J, Ahn G O, Hwang S, Kim S, Park N. Nanoscale, 2015, 7: 9433.
[74] Hu R, Yuan H, Wang B, Liu L, Lv F, Wang S, ACS Appl. Mater. Interfaces, 2014, 6: 11823.
[75] Sun L P, Hu N, Peng J, Chen L Y, Weng J. Adv. Funct. Mater., 2014, 24: 6905.
[76] Li C, Faulkner-Jones A, Dun A R, Jin J, Chen P, Xing Y, Yang Z, Li Z, Shu W, Liu D, Duncan R R. Angew. Chem. Int. Ed., 2015, 54: 3957.
[77] Jin J, Xing Y, Xi Y, Liu X, Zhou T, Ma X, Yang Z, Wang S, Liu D. Adv. Mater., 2013, 25: 4714.
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[3] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[4] 李姝慧, 李倩倩, 李振. 从单分子到分子聚集态科学[J]. 化学进展, 2022, 34(7): 1554-1575.
[5] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[6] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[7] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[8] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[9] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[10] 王萌, 宋贺, 祝伊飞. 智能响应蓝相液晶光子晶体[J]. 化学进展, 2022, 34(12): 2588-2603.
[11] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[12] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[13] 李庚, 李洁, 姜泓宇, 梁效中, 郭鹍鹏. 力刺激响应发光聚合物[J]. 化学进展, 2022, 34(10): 2222-2238.
[14] 陈永杭, 李欣芳, 余伟江, 王幽香. 刺激响应聚合物微针在经皮给药中的应用[J]. 化学进展, 2021, 33(7): 1152-1158.
[15] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
阅读次数
全文


摘要

DNA水凝胶的制备及生物应用