English
新闻公告
More
化学进展 2015, Vol. 27 Issue (10): 1413-1424 DOI: 10.7536/PC150408 前一篇   后一篇

• 综述与评论 •

多肽基超分子螺旋聚合物

王军1,3, 张阿方1,2*   

  1. 1. 上海大学材料科学与工程学院 上海 200444;
    2. 上海大学钱伟长学院 上海 200444;
    3. 济宁医学院药学院 日照 276800
  • 收稿日期:2015-04-01 修回日期:2015-06-01 出版日期:2015-10-15 发布日期:2015-09-10
  • 通讯作者: 张阿方 E-mail:azhang@shu.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(No.21034004),国家自然科学基金面上项目(No.21374058,21574078),教育部博士点基金重点项目(No.201331081100166)及山东省高等学校青年骨干教师国内访问学者项目资助

Peptide-Mediated Supramolecular Helical Polymers

Wang Jun1,3, Zhang Afang1,2*   

  1. 1. School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China;
    2. Qianweichang School, Shanghai University, Shanghai 200444, China;
    3. School of Pharmacy, Jining Medical College, Rizhao 276800, China
  • Received:2015-04-01 Revised:2015-06-01 Online:2015-10-15 Published:2015-09-10
  • Supported by:
    The work was supported by the State Key Program of National Natural Science Foundation of China (No. 21034004), the National Natural Science Foundation of China (No. 21374058, 21574078), the PhD Programs Foundation of the Ministry of Education of China (No. 201331081100166), and the Higher School Young Backbone Teacher Visiting Scholar Program of Shandong Province.
超分子螺旋聚合物结合了超分子聚合物制备方法简便、结构及性能可调控等优势,相比于人工合成的共价型螺旋聚合物更接近自然界螺旋生物大分子,因而在手性探针、不对称催化以及手性识别和分离等领域具有广泛的应用前景。结合多肽的手性优势、丰富的二次有序构象及其出色的自组装行为,以多肽作为结构基元经超分子组装制备具有螺旋构象的聚合物,不仅丰富了手性/螺旋聚合物的制备途径,同时为多肽材料的功能化应用提供新的广阔前景。本文综述了多肽基元之间经超分子作用诱导形成的超分子螺旋聚合物,总结了双亲性多肽以及多肽拓扑结构对超分子组装过程的影响及其对形成螺旋结构的控制,重点归纳了由多肽构筑的光、温度、pH、金属离子和酶等不同类型智能响应性的超分子螺旋聚合物。
Combining the dynamic and tunable characteristics from supramolecular polymers and the helical conformation from chiral polymers, supramolecular helical polymers have received considerable research interest and been widely applied in various fields, including chiral probes and chiral recognition, as well as asymmetric catalysis. Peptides integrate chirality, abandoned secondary structures, and high tendency to self-assemble, which have been used for mediating supramolecular formation of helical polymers. In the present review, peptide-mediated supramolecular helical polymers will be described in details, focusing on structural effects of different peptides on supramolecular formation and chirality enhancement. By comparison to linear peptides, topology of their representatives, including cyclopeptides, dendritic and C3 peptides, is analyzed to understand its effect on the chiral enhancement and formation of helical conformation. Furthermore, supramolecular helical polymers mediated by peptides showing stimuli-responsiveness to light, temperature, pH, metal ions and enzymes are emphasized. The stimuli-responsive properties may exert influence on helical conformation and chiral enhancement, and make the conformation tunable. At the same time, the stimuli-responsiveness may afford these supramolecular polymers new functionalities and pose new light on promising applications. The present review hopes to provide readers an updated point view on how peptides mediate the formation of helical supramolecular polymers with environmental responsiveness.

Contents
1 Introduction
2 Amphiphilic peptide-mediated supramolecular helical polymers
2.1 Pure peptides
2.2 Hydrophobic alkyl chain modified peptides
2.3 Aromatic short peptides
2.4 Bolaamphiphilic peptides
2.5 Peptides based on π-π interaction
2.6 Amyloid-like peptides
3 Topological peptide-mediated supramolecular helical polymers
3.1 Cyclopeptides
3.2 Dendritic peptides
3.3 C3 peptides
4 Peptide-based stimuli-responsive supramolecular helical polymers
4.1 Temperature
4.2 Light
4.3 pH
4.4 Metal ions
4.5 Enzyme
5 Conclusion

中图分类号: 

()
[1] Zhang S G. Biotechnol. Adv., 2002, 20: 321.
[2] 黄飞鹤(Huang F H),翟春熙(Zhai C X), 郑波(Zheng B), 李世军(Li S J).超分子聚合物(Supramolecular Polymers).杭州:浙江大学出版社(Hangzhou:Zhejiang University Press). 2012. 127.
[3] Huang F H, Scherman O A. Chem. Soc. Rev., 2012, 41: 5879.
[4] Stupp S I, Palmer L C. Chem. Mater., 2014, 26: 507.
[5] Zhang J X, Ma P X. Adv. Drug Delivery Rev., 2013, 65: 1215.
[6] Li G L, Liu J Y, Pang Y, Wang R B, Mao L M, Yan D Y, Zhu X Y, Sun J. Biomacromolecules, 2011, 12 : 2016.
[7] Burckbuchler V, Wintgens V, Leborgne C, Lecomte S, Leygue N, Scherman D, Kichler A, Amiel C. Bioconjugate Chem., 2008, 19: 2311.
[8] Sun M, Zhang H, Liu B, Liu Y. Macromolecules, 2013, 46: 4268.
[9] Shah R N, Shah N A, Del Rosario Lim M M, Hsieh C, Nuber G, Stupp S I. Proc. Natl. Acad. Sci. U.S.A., 2010, 107: 3293.
[10] Moulin E, Niess F, Fuks G, Jouault N, Buhler E, Giuseppone N. Nanoscale, 2012, 4: 6748.
[11] Krieg E, Weissman H, Shirman E, Shimoni E, Rybtchinski B. Nat. Nanotechnol., 2011, 6: 141.
[12] Haldar D, Schmuck C. Chem. Soc. Rev., 2009, 38: 363.
[13] Aiba Y, Sumaoka J, Komiyama M. Chem. Soc. Rev., 2011, 40: 5657.
[14] Palmans A R A, Meijer E W. Angew. Chem. Int. Ed., 2007, 47: 8948.
[15] Zhao X B, Pan F, Xu H, Yaseen M, Shan H H, Hauser C A E, Zhang S G, Lu J R. Chem. Soc. Rev., 2010, 39: 3480.
[16] Reches M, Gazit E. Science, 2003, 300: 625.
[17] Zelzer M, Ulijn R V. Chem. Soc. Rev., 2010, 39: 3351.
[18] Adler-Abramovich L, Gazit E. Chem. Soc. Rev., 2014, 43: 6881.
[19] Frederix P W J M, Scott G G, Abul-Haija Y M, Kalafatovic D, Pappas C G, Javid N, Hunt N T, Ulijn R V, Tuttle T. Nat. Chem., 2015, 7: 30.
[20] Dehsorkhi A, Castelletto V, Hamley I W. J. Pept. Sci., 2014, 20: 453.
[21] Aggeli A, Nyrkova I A, Bell M, Harding R, Carrick L, McLeish T C B, Semenov A N, Boden N. Proc. Natl. Acad. Sci. U.S.A., 2001, 98: 11857.
[22] Ryadnov M G, Woolfson D N. Nat. Mater., 2003, 2: 329.
[23] Smith A M, Acquah S F A, Bone N, Kroto H W, Ryadnov M G, Stevens M S P, Walton D R M, Woolfson D N. Angew. Chem. Int. Ed., 2005, 44: 325.
[24] Vankann M, Möllerfeld J, Ringsdorf H, Höcker H. J. Colloid Interface Sci., 1996, 178: 241.
[25] Hamley I W, Dehsorkhi A,Castelletto V, Seitsonen J, Ruokolainen J, Iatrou H. Soft Matter, 2013, 9: 4794.
[26] Pashuck E T, Cui H, Stupp S I. J. Am. Chem. Soc., 2010, 132: 6041.
[27] Korevaar P A, Newcomb C J, Meijer E W, Stupp S I. J. Am. Chem. Soc., 2014, 136: 8540.
[28] Kokkoli E, Mardilovich A, Wedekind A, Rexeisen E L, Garg A, Craig J A. Soft Matter, 2006, 2: 1015.
[29] Bull S R, Guler M O, Bras R E, Meade T J, Stupp S I. Nano Lett., 2005, 5: 1.
[30] Pashuck E T, Stupp S I. J. Am. Chem. Soc., 2010, 132: 8819.
[31] Cui H, Cheetham A G, Pashuck E T, Stupp S I. J. Am. Chem. Soc., 2014, 136: 12461.
[32] Chen C L, Zhang P J, Rosi N L. J. Am. Chem. Soc., 2008, 130: 13555.
[33] Chen C L, Rosi N L. J. Am. Chem. Soc., 2010, 132: 6902.
[34] Song C Y, Blaber M G, Zhao G P, Zhang P J, Fry H C, Schatz G C, Rosi N L. Nano Lett., 2013, 13: 3256.
[35] Jayawarna V, Ali M, Jowitt T A, Miller A F, Saiani A, Gough J E, Ulijn R V. Adv. Mater., 2006, 18: 611.
[36] Vegners R, Shestakova I, Kalvinsh I, Ezzell R M, Janmey P A. J. Pept. Sci., 1995, 1: 371.
[37] Yang Z M, Liang G L, Ma M, Gao Y, Xu B. J. Mater. Chem., 2007, 17: 850.
[38] Hughes M, Xu H X, Frederix P J M, Smith A M, Hunt N T, Tuttle T, Kinloch I A, Ulijn R V. Soft Matter, 2011, 7: 10032.
[39] Sun X L, Biswas N, Kai T, Dai Z F, Dluhy R A, Chaikof E L. Langmuir, 2006, 22: 1201.
[40] Gao P, Liu M H. Langmuir, 2006, 22: 6727.
[41] Naidoo V B, Rautenbach M. J. Pept. Sci., 2013, 19: 784.
[42] Sanders A M, Dawidczyk T J, Katz H E, Tovar J D. ACS Macro Lett., 2012, 1: 1326.
[43] Wall B D, Zacca A E, Sanders A M, Wilson W L, Ferguson A L, Tovar J D. Langmuir, 2014, 30: 5946.
[44] Marty R, Nigon R, Leite D, Frauenrath H. J. Am. Chem. Soc., 2014, 136: 3919.
[45] Marty R, Szilluweit R, Sánchez-Ferrer A, Bolisetty S, Adamcik J, Mezzenga R, Spitzner E C, Feifer M,Steinmann S N,Corminboeuf C, Frauenrath H. ACS Nano, 2013, 7: 8498.
[46] Uversky V N, Fink A L. Biochim. Biophys. Acta, 2004, 1698:131.
[47] Dzwolak W. Chirality, 2014, 26: 580.
[48] Usov I, Adamcik J, Mezzenga R. Nano, 2013, 7: 10465.
[49] Lara C, Reynolds N P, Berryman J T, Xu A Q, Zhang A, Mezzenga R. J. Am. Chem. Soc., 2014, 136: 4732.
[50] Ghadiri M R, Granja J R, Milligan R A, Mcree D E, Khzanovich N. Nature, 1993, 366: 324.
[51] Bong D T, Clark T D, Granja J R, Ghadiri M R. Angew. Chem. Int. Ed., 2001, 40: 988.
[52] Choi S J, Jeong W J, Kim T H, Lim Y B. Soft Matter, 2011, 7: 1675.
[53] Jeong H S H, Park H, Jin K S, Lim Y B. Biomacromolecules, 2014, 15: 2138.
[54] Jeong W J, Choi S J, Choi J S, Lim Y B. ACS Nano, 2013, 7: 6850.
[55] Percec V, Dulcey A E, Balagurusamy V S K, Miura Y, Smidrkal J, Peterca M, Nummelin S, Edlund U, Hudson S D, Heiney P A, Duan H, Magonov S N, Vinogradov S A. Nature, 2004, 430: 764.
[56] Percec V, Dulcey A E, Peterca M, Adelman P, Samant R, Balagurusamy V S K, Heiney P A. J. Am. Chem. Soc., 2007, 129: 5992.
[57] Percec V, Dulcey A E, Peterca M. Ilies M, Sienkowska M J, Heiney P A. J. Am. Chem. Soc., 2005, 127: 17902.
[58] Rosen B M, Peterca M, Morimitsu K, Dulcey A E, Leowanawat P, Resmerita A M, Imam M R, Percec V. J. Am. Chem. Soc., 2011, 133: 5135.
[59] Yan J T, Liu K, Zhang X Q, Li W, Zhang A. J. Polym. Sci., Part A: Polym. Chem., 2015, 53: 33.
[60] Stals P J M, Smulders M M J, Martín-Rapún R, Palmans A R A, Meijer E W. Chem. Eur. J., 2009, 15: 2071.
[61] Shikata T, Kuruma Y, Sakamoto A, Hanabusa K. J. Phys. Chem. B, 2008, 112: 16393.
[62] Shen Z C, Wang T Y, Liu M H. Angew. Chem. Int. Ed., 2014, 53: 13424.
[63] Roosma J, Mes T, Leclère P, Palmans A R A, Meijer E W. J. Am. Chem. Soc., 2008, 130: 1120.
[64] Gillissen M A J, Koenigs M M E, Spiering J J H, Vekemans J A J M, Palmans A R A, Voets I K, Meijer E W. J. Am. Chem. Soc., 2014, 136: 336.
[65] Cantekin S, Greefab T F A, Palmans A R A. Chem. Soc. Rev., 2012, 41, 6125.
[66] Cantekin S, Balkenende D W R, Smulders M M J, Palmans A R A, Meijer E W. Nat. Chem., 2011, 3: 42.
[67] Korevaar P A, George S J, Markvoort A J, Smulers M M J, Hilbers P A J, Schenning A P H J, de Greef T F A D, Meijer E W. Nature, 2012, 481: 492.
[68] Hout K P, Martín-Rapún R, Vekemans J A J M, Meijer E W. Chem. Eur. J., 2007, 13: 8111.
[69] Dai Y T, Zhao X, Su X Y, Li G Y, Zhang A. Macromol. Rapid Commun., 2014, 35: 1326.
[70] Chen C S, Xu X D, Wang Y, Yang J, Jia H Z, Cheng H, Chu C C, Zhuo R X, Zhang X Z. Small, 2013, 9: 920.
[71] Wang H M, Yang Z M. Nanoscale, 2012, 4: 5259.
[72] Liu X, Wang X M, Horii A, Wang X J, Qiao L, Zhang S G, Cui F Z. Nanoscale, 2012, 4: 2720.
[73] Palladino P, Castelletto V, Dehsorkhi A, Stetsenko D, Hamley I W. Langmuir, 2012, 28: 12209.
[74] Miravet J F, Escuder B, Segarra-Maset M D, Tena-Solsona M, Hamley I W, Dehsorkhi A, Castelletto V. Soft Matter, 2013, 9: 3558.
[75] Hamley I W, Dehsorkhi A, Castelletto V, Furzeland S, Atkins D, Seitsonen J, Ruokolainen J. Soft Matter, 2013, 9: 9290.
[76] Meijer J T, Henckens M J A G, Minten I J, Löwik D W P M, Hest J C M. Soft Matter, 2007, 3: 1135.
[77] Chen C S, Xu X D, Li S Y, Zhuo R X, Zhang X Z. Nanoscale, 2013, 5: 6270.
[78] Apostolovic B, Klok H A. Biomacromolecules, 2008, 9: 3173.
[79] Zhang J, Hao R, Huang L, Yao J, Chen X, Shao Z Z. Chem. Commun., 2011, 47: 10296.
[80] Beyer R L, Hoang H N, Appleton T G, Fairlie D P. J. Am. Chem. Soc., 2004, 126: 15096.
[81] Ma M T, Hoang H N, Scully C C G, Appleton T G, Fairlie D P. J. Am. Chem. Soc., 2009, 131: 4505.
[82] Dehsorkhi A, Hamley I W, Seitsonen J, Ruokolainen J. Langmuir, 2013, 29: 6665.
[83] Rasale D B, Biswas S, Konda M, Das A K. RSC Adv., 2015, 5: 1529.
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[3] 李姝慧, 李倩倩, 李振. 从单分子到分子聚集态科学[J]. 化学进展, 2022, 34(7): 1554-1575.
[4] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[5] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[6] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[7] 王萌, 宋贺, 祝伊飞. 智能响应蓝相液晶光子晶体[J]. 化学进展, 2022, 34(12): 2588-2603.
[8] 李庚, 李洁, 姜泓宇, 梁效中, 郭鹍鹏. 力刺激响应发光聚合物[J]. 化学进展, 2022, 34(10): 2222-2238.
[9] 陈永杭, 李欣芳, 余伟江, 王幽香. 刺激响应聚合物微针在经皮给药中的应用[J]. 化学进展, 2021, 33(7): 1152-1158.
[10] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
[11] 林建云, 罗时荷, 杨崇岭, 肖颖, 杨丽庭, 汪朝阳. 生物基高分子型止血材料和伤口敷料[J]. 化学进展, 2021, 33(4): 581-595.
[12] 于帅兵, 王召璐, 庞绪良, 王蕾, 李连之, 林英武. 多肽基金属离子传感器[J]. 化学进展, 2021, 33(3): 380-393.
[13] 张晗, 丁家旺, 秦伟. 基于多肽识别的电化学生物传感技术[J]. 化学进展, 2021, 33(10): 1756-1765.
[14] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.
[15] 吴晴, 唐一源, 余淼, 张悦莹, 李杏梅. 基于肿瘤微环境响应的DNA纳米结构递药系统[J]. 化学进展, 2020, 32(7): 927-934.
阅读次数
全文


摘要

多肽基超分子螺旋聚合物