English
新闻公告
More
化学进展 2015, Vol. 27 Issue (10): 1374-1383 DOI: 10.7536/PC150351 前一篇   后一篇

• 综述与评论 •

有序介孔硅材料主-客体组装及应用研究

张晓东*, 董寒, 王吟*, 崔立峰*   

  1. 上海理工大学环境与建筑学院环境与低碳科学研究中心 上海 200093
  • 收稿日期:2015-03-01 修回日期:2015-04-01 出版日期:2015-10-15 发布日期:2015-09-10
  • 通讯作者: 张晓东,王吟,崔立峰 E-mail:fatzhxd@126.com;yin_1986@usst.edu.cn;lifeng.cui@gmail.com
  • 基金资助:
    国家自然科学基金项目(No.21507086),上海市青年科技英才扬帆计划(No.14YF1409900),上海高校青年教师资助计划(No.ZZSLG14014)和沪江基金研究基地专项(B14003,D14004)资助

Host-Guest Assembly and Application of Ordered Mesoporous Silica Materials

Zhang Xiaodong*, Dong Han, Wang Yin*, Cui Lifeng*   

  1. Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2015-03-01 Revised:2015-04-01 Online:2015-10-15 Published:2015-09-10
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21507086), Shanghai Sailing Program (No. 14YF1409900), Shanghai University Young Teacher Program (No. ZZSLG14014), and the Hujiang Foundation Research Base Program (B14003,D14004).
介孔分子筛材料具有高的比表面积和孔体积、发达的孔结构、可控的形貌、表面基团可功能化、耐热、无毒无害等特点,以其为研究核心,在学术界和工业界均具有广泛的应用前景。通过模板法合成孔径在纳米范围的有序介孔硅材料,其具有从一维到三维高度规整的孔道结构,在吸附、分离、催化、生物医药工程等领域展现出巨大的应用潜能。利用具有几何和电子束缚特性的有序规整孔道作为微反应器来进行纳米结构主-客体组装,势必会显著增强其应用价值。本文以有序介孔硅材料规整孔道为基础和出发点,结合本课题组多年的研究结果,系统概述了近几年客体在有序介孔硅材料孔道内组装的进展,探讨了主-客体组装过程中的影响因素和合成机理。最后,着重对主-客体组装材料在环境净化和生物医药工程领域的应用进行概述。
Mesoporous molecular sieve materials have been widely studied in academic and industry due to their remarkable physicochemical properties, including the high specific surface area and pore volume, extensively pore structure, controllable morphology, surface functionalization, good thermal stability, non-toxic and harmless. Ordered mesoporous silica materials, prepared by template method, possess well-ordered periodicity and one dimension to three dimensional interconnected pore structures that are of interest for numerous applications, such as adsorption, separation, catalysis and biomedicine engineering. In order to utilize the geometric and electronic bound properties of ordered-mesochannels as micro reactor, it is necessary to develop host-guest assembly from fundamental and application point of view. In this review, combining with the latest work in our group, ordered mesochannels of mesoporous silica materials are used as a base and starting point. The research progress of host-guest assembly in recent years are introduced systematically. Influence factors, including the choice of templates, organic groups and guest, preparation methods and other necessary modifications, and synthetic mechanism in the process of host-guest assembly are also discussed. Finally, host-guest assembly of ordered mesoporous silica materials in environmental purification and biomedical engineering application are summarized.

Contents
1 Introduction
2 The assembly of ordered mesoporous silica materials
2.1 Classification and characteristics of ordered mesoporous silica materials
2.2 Host- the assembly of metal ions
2.3 Guest-the assembly of metal particles
2.4 Guest-the assembly of MOFs
2.5 Guest-the assembly of enzymes and drug molecules
3 Applications
3.1 Environmental purification
3.2 Biology field
4 Conclusion and outlook

中图分类号: 

()
[1] 徐如人(Xu R R), 蒋文琴(Jiang W Q), 于吉红(Yu J H), 霍启升(Huo Q S), 陈接胜(Chen J S). 分子筛与多孔材料化学(Chemistry-Zeolite and Porous Materials). 北京: 科学出版社(Beijing: Science Press), 2004. 100.
[2] Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W. J. Am. Chem. Soc., 1992, 114(27): 10834.
[3] Kresge J S, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Nature, 1992, 359(6397): 710.
[4] Dag K A, Ozin G A. Adv. Mater., 1995, 7: 72.
[5] Vallet-Regi M, Rámila A, del Real R P, Pérez-Pariente J. Chem. Mater., 2001, 13: 308.
[6] Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Science, 1998, 279: 548.
[7] Zhao D Y, Huo Q S, Feng J L, Kim J M, Han Y J, Stucky G D. Chem. Mater., 1999, 11: 2668.
[8] Huo Q S, Leon R, Petroff P M, Stucky G D. Science, 1995, 268: 1324.
[9] Liu X Y, Tian B Z, Yu C Z, Gao F, Xie S H, Tu B, Che R C, Peng L M, Zhao D Y. Angew. Chem. Int. Ed., 2002, 41: 3876.
[10] Huo Q S, Margolese D I, Ciesla U, Feng P Y, Gier T E, Sieger P, Leon R, Petroff P M, Schüth F, Stucky G D. Nature, 1994, 368: 317.
[11] Kleitz F, Liu D N, Anilkumar G M, Park I S, Solovyov L A, Shmakov A N, Ryoo R. J. Phys. Chem. B, 2003, 107: 14296.
[12] 赵东元(Zhao D Y), 万颖(Wan Y), 周午纵(Zhou W Z). 有序介孔分子筛材料(Ordered Mesoporous Molecular Sieve Materials). 北京: 高等教育出版社(Beijing: Higher Education Press), 2013. 230.
[13] Ungureanu A, Dragoi B, Hulea V, Cacciaguerra T, Meloni D, Solina V, Dumitriu E. Micropor. Mesopor. Mater., 2012, 163: 51.
[14] Chatterjee M, Ishizaka T, Kawanami H. J. Colloid Interface Sci., 2014, 420: 15.
[15] Prabhu A, Shoaibi A A, Srinivasakannan C. Appl. Catal. A, 2013, 466: 137.
[16] Zhang X B, Liu S M, Tong H W, Yong G P. Appl. Catal. B, 2012, 127: 105.
[17] Lee J S, Han G B, Kang M. Energy, 2012, 44: 248.
[18] Wan M M, Sun X D, Liu S, Ma J, Zhu J H. Micropor. Mesopor. Mater., 2014, 199: 40.
[19] Niu Y F, Wang H, Zhu X L, Song Z Q, Xie X N, Liu X, Han J Y, Ge Q F. Micropor. Mesopor. Mater., 2014, 198: 215.
[20] Santhanaraj D, Suresh C, Gurulakshmi M, Sasirekha N R, Shanthi K. J. Porous Mater., 2012, 19: 1027.
[21] Liu J, Liu Y, Yang W, Guo H, Fang F, Tang Z H. J. Mol. Catal. A, 2014, 393: 1.
[22] Sun B, Li L, Fei Z Y, Gu S S, Lu P, Ji W J. Micropor. Mesopor. Mater., 2014, 186: 14.
[23] Lin C, Tao K, Yu H B, Hua D Y, Zhou S H. Catal. Sci. Technol., 2014, 4: 4010.
[24] Qi B, Lou L L, Wang Y B, Yu K, Yang Y, Liu S X. Micropor. Mesopor. Mater., 2014,190: 275.
[25] Balamurugan J, Thangamuthu R, Pandurangan A. J. Mater. Chem. A, 2013, 1: 5070.
[26] Aiello D, Aiello R, Testa F, Martino T, Aiello I, Deda M L, Ghedini M. J. Photochem. Photobiol. A, 2009, 201: 81.
[27] Gao D W, Duan A J, Zhang X, Zhao Z, Hong E, Li J M, Wang H. Appl. Catal. B, 2015, 165: 269.
[28] Qu Z P, Zhang X D, Yu F L, Liu X C, Fu Q. J. Catal., 2015, 321: 113.
[29] Bell A T. Science, 2003, 299: 1688.
[30] 包信和(Bao X H).中国科学: 化学(Science in China: Chemistry), 2009, 39: 1125.
[31] Zhang X D, Qu Z P, Li X Y, Wen M, Ma D, Wu J J. Sep. Purif. Technol., 2010, 72: 395.
[32] Zhang X D, Qu Z P, Yu F L, Wang Y. J. Catal., 2013, 297: 264.
[33] Zhu J, Zoltan K, Puntes V F, Kiricsi I, Miao C X, Ager J W, Alivisatos A P, Somorjai G A. Langmuir, 2003, 19: 4396.
[34] Zhu J J, Wang T, Xu X L, Xiao P, Li J L. Appl. Catal. B, 2013, 130/131: 197.
[35] Adhyapak P V, Karandikar P, Vijayamohanan K, Athawale A A, Chandwadkar A J. Mater. Lett., 2004, 58: 1168.
[36] Zhu W P, Han Y C, An L J. Micropor. Mesopor. Mater., 2005, 80: 221.
[37] Tian D, Yong G P, Dai Y, Yan X Y, Liu S M. Catal. Lett., 2009, 130: 211.
[38] Zhang X D, Qu Z P, Li X Y, Zhao Q D, Zhang X, Quan X. Mater. Lett., 2011, 65: 1892.
[39] Qu Z P, Zhang X D, Lv Y, Quan X, Fu Q. J. Nanosci. Nanotech., 2013, 13: 4573.
[40] Zhang X D, Qu Z P, Yu F L, Wang Y. Chin. J. Catal., 2013, 34: 1277.
[41] Yin J Z, Zhang C J, Xu Q Q, Wang A Q. J. Inorg. Mater., 2009, 24: 129.
[42] Sun J M, Ma D, Zhang H, Liu X M, Han X W, Bao X H, Weinberg G, Pfänder N, Su D S. J. Am. Chem. Soc., 2006, 128: 15756.
[43] Rombi E, Cutrufello M G, Cannas C, Occhiuzzi M, Onida B, Ferino I. Phys. Chem. Chem. Phys., 2012, 14: 6889.
[44] Wang L, Wang H, Hapala P, Zhu L F, Ren L M, Meng X J, Lewis J P, Xiao F S. J. Catal., 2011, 281: 30.
[45] Zhang G H, Wang P Y, Wei X F. Catal. Lett., 2013, 143: 1188.
[46] Zheng J W, Lin H Q, Wang Y N, Zheng X L, Duan X P, Yuan Y Z. J. Catal., 2013, 297: 110.
[47] Zhou H C, Long J R, Yaghi O M. Chem. Rev., 2012, 112(2): 673.
[48] Sun L B, Li J R, Lu W G, Gu Z Y, Luo Z P, Zhou H C. J. Am. Chem. Soc., 2012, 134: 15923.
[49] Wu C M, Rathi M, Ahrenkiel S P, Koodali R T, Wang Z Q. Chem. Commun., 2013, 49: 1223.
[50] Sachse A, Ameloot R, Coq B, Fajula F, Coasne B, Vos D D, Galarneau A. Chem. Commun., 2012, 48: 4749.
[51] Qian M, Liu M, Duan M N,Wu Z, Zhou Y M. Cell Biochem. Biophys., 2015, 1: 127.
[52] Zhai Q Z, Sun S J. Russ. J. Phys. Chem. A, 2014, 12: 2243.
[53] Meissner J, Prause A, Tommaso C D, Bharti B, Findenegg G H. J. Phys. Chem. C, 2015, 119: 2438.
[54] Zhao L Y, Sui D, Wang Y. RSC Adv., 2015, 5: 16611.
[55] Li Q, Wang Z, Fang D M, Qu H Y, Zhu Y, Zou H J, Chen Y R, Du Y P, Hu H L. New J. Chem., 2014, 38: 248.
[56] Moorthy M S, Park S S, Selvaraj M, Ha C S. J. Nanosci. Nanotechnol., 2014, 14: 8891.
[57] Kishor R, Ghoshal A K. Chem. Eng. J., 2015, 262: 882.
[58] Seo M G, Lee D W, Lee K Y, Moon D J. Fuel, 2015, 143: 63.
[59] Deng Q G, Qin Z L, Yang Y, Song W M. Chin. J. Chem. Eng., 2015, 23: 384.
[60] Qu Z P, Zhang X D, Yu F L, Jia J X. Micropor. Mesopor. Mater., 2014, 188: 1.
[61] Qu Z P, Shen S J, Chen D, Wang Y. J. Mol. Catal. A, 2012, 356: 171.
[62] Qu Z P, Bu Y B, Qin Y, Wang Y, Fu Q. Chem. Eng. J., 2012, 209: 163.
[63] Li X F, Liu X, Xu L L, Wen Y Z, Ma J Q, Wu Z C. Appl. Catal. B, 165: 79.
[64] Boudjemaa A, Trari M, Bachari K. Environ. Prog. Sustain. Energy, 2014, 33: 141.
[65] Gandhi S, Thandavan K, Sethuraman S, Krishnan U M. J. Porous Mater., 2013, 20: 1009.
[66] Hu Y, Anpo M, Wei C H. J. Photoch. Photobio. A, 2013, 264: 48.
[67] Mei B, Pougin A, Strunk J. J. Catal., 2013, 306: 184.
[68] 王炎(Wang Y), 郑旭翰(Zheng X H), 姜兆华(Jiang Z H). 化学进展(Progress in Chemistry), 2006, 18(10): 1345.
[69] 胡燚(Hu Y), 刘维明(Liu W M), 邹彬(Zou B), 唐苏苏(Tang S S), 黄和(Huang H).化学进展(Progress in Chemistry), 2010, 22(8): 1656.
[70] Liu X Y, Shi X Z, Wang H M, Zhang H X. Micropor. Mesopor. Mater., 2014, 200: 165.
[71] Hashemikia S, Hemmatinejad N, Ahmadi E, Montazer M. J. Colloid Interface Sci., 2015, 443: 105.
[72] Wan M M, Sun X D, Liu S, Ma J, Zhu J H. Micropor. Mesopor. Mater., 2014, 199: 40.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[8] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[9] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[10] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[11] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[12] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[13] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[14] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[15] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.