English
新闻公告
More
化学进展 2015, Vol. 27 Issue (9): 1213-1229 DOI: 10.7536/PC150156 前一篇   后一篇

• 综述与评论 •

反应型罗丹明类荧光探针

付杨1, 颜范勇1*, 郑坦承1, 母雪玲1, 孙凤展1, 陈莉2*   

  1. 1. 天津工业大学环境与化学工程学院 中空纤维膜材料与膜过程国家重点实验室 天津 300387;
    2. 天津工业大学材料科学与工程学院 改性与功能纤维天津市重点实验室 天津 300387
  • 收稿日期:2015-01-01 修回日期:2015-04-01 出版日期:2015-09-15 发布日期:2015-06-24
  • 通讯作者: 颜范勇, 陈莉 E-mail:yanfanyong@tjpu.edu.cn;chenlis@tjpu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No. 21174103, 21374078, 51303132),国家级大学生创新创业训练计划项目(No. 201310058017)和天津市应用基础及前沿技术研究项目(No. 15JCYBJC18100)资助

Reactive Rhodamine Fluorescent Probes

Fu Yang1, Yan Fanyong1*, Zheng Tancheng1, Mu Xueling1, Sun Fengzhan1, Chen Li2*   

  1. 1. State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China;
    2. Tianjin Key Laboratory of Fiber Modification and Functional Fiber, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
  • Received:2015-01-01 Revised:2015-04-01 Online:2015-09-15 Published:2015-06-24
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21174103, 21374078, 51303132), the National Training Program of Innovation and Entrepreneurship for Undergraduates(No. 201310058017), and the Tianjin Research Program of Application Foundation and Advanced Technology (No. 15JCYBJC18100).
相比于基于非共价键的超分子相互作用的传统荧光探针,反应型荧光探针的识别过程不是通过配位和氢键的相互作用,而是通过与目标物发生化学反应,使得光谱性质或颜色改变,生成不同结构的光活性化合物。近年来,反应型荧光探针主要有三种化学反应类型:底物与受体通过共价键连接;底物作为催化剂,与受体发生不可逆的反应;基于置换反应使底物与受体络合。正是反应型荧光探针利用选择反应的优势识别特定物质,因而提供了方便、快捷、专一的分析检测目标物的方法,具有很高的灵敏度和选择性,受到越来越多的关注。本文综述了近六年来基于反应型罗丹明荧光探针用于检测金属阳离子、活性氧化物和阴离子诱导β-内酰胺开环的最新研究进展,评述其结构和检测性能之间的关系,并展望这类荧光探针的应用前景与发展趋势。
Compared with the traditional fluorescent probes based on non-covalent bond supermolecular interactions, the identification process of reaction fluorescent probes is a chemical reaction with the target compound to change the spectral properties or color, thus different structures of the photoactive compounds are generated. In recent years, reactive fluorescent probes are mainly three types of chemical reactions, including the substrate and the receptor are connected through covalent bond; substrate as a catalyst occurs irreversible reactions with the receptor; the substrate coordinates with the receptor based on replacement reacting. Because of the advantages of using the selection of a particular substance reaction, reactive fluorescent probes provide a convenient, quick, specific method to detect target, with high sensitivity and selectivity. In the review, the latest research progress of reaction-based rhodamine fluorescent probes to detect the metal cations, reactive oxygen species and anions to induce β-lactam ring-opening in the past six years is reviewed, and the relationship between the structure and the detection performance of the probes is introduced. In addition, the application prospect and development trend of fluorescent probes are prospected.

Contents
1 Intorduction
2 Reaction-based fluorescent probes for cations
2.1 Reaction-based fluorescent probes for Cu2+
2.2 Reaction-based fluorescent probes for Hg2+
2.3 Reaction-based fluorescent probes for Fe3+
2.4 Reaction-based fluorescent probes for Pd2+
2.5 Reaction-based fluorescent probes for Ag+ and Au3+
3 Reaction-based fluorescent probes for reactive oxygen species(ROS)
3.1 Reaction-based fluorescent probes for ClO-
3.2 Reaction-based fluorescent probes for HO·
3.3 Reaction-based fluorescent probes for H2O2
4 Reaction-based fluorescent probes for anions
5 Conclusion

中图分类号: 

()
[1] Park S, Kim W, Swamy K M K, Lee H Y, Jung J Y, Kim G, Kim Y, Kim S J, Yoon J. Dyes Pigments, 2013, 99: 323.
[2] Sun T, Moon J O, Choi M G, Cho Y, Ham S W, Chang S K. Sensor and Actuat B, 2013, 182: 755.
[3] Wei L, Yi L, Song F, Wei C, Wang B F, Xi Z. Sci. Rep., 2014, 4 : 4521.
[4] Adhikari S, Ghosh A, Mandal S, Sengupta A, Chattopadhyay A, Matalobos J S, Lohar S, Das D. Dalton Trans., 2014, 43: 7747.
[5] 冷冰(Leng B), 田禾(Tian H). 化学进展(Progress in Chemistry), 2010, 22(5): 837.
[6] Wang M, Yan F Y, Zou Y, Chen L, Yang N, Zhou X G. Sensor and Actuat B, 2014, 192: 512.
[7] Yan F Y, Wang M, Cao D L, Yang N, Fu Y, Chen L, Chen L G. Dyes Pigments, 2013, 98: 42.
[8] Yan F Y, Cao D L, Yang N, Yu Q H, Wang M, Chen L. Sensor and Actuat B, 2012, 162: 313.
[9] Zhang D, Li M, Wang M, Wang J H, Yan X, Ye Y, Zhao Y F. Sensor and Actuat B, 2013, 177: 997.
[10] Lavis L D, Raines R T. ACS Chem. Biol., 2008, 3: 142.
[11] 孙伟 (Sun W), 胡德禹 (Hu D Y), 吴志兵 (Wu Z B), 宋宝安 (Song B A), 杨松 (Yang S). 有机化学(Chinese Journal of Organic Chemistry), 2011, 31(7): 997.
[12] Jun M E, Roy B, Ahn K H. Chem. Commun., 2011, 47: 7583.
[13] 刘云龙(Liu Y L). 山西大学博士论文(Doctoral Dissertation of Shanxi University), 2012.
[14] Kim H N, Lee M H, Kim H J, Kim J S, Yoon J. Chem. Soc. Rev., 2008, 37: 1465.
[15] Duong T Q, Kim J S. Chem. Rev., 2010, 110: 6280.
[16] Barceloux D G. J. Toxicol. Clin. Toxicol., 1999, 37: 217.
[17] Georgopoulos P G, Roy A, Yonone-Lioy M J, Opiekun R E, Lioy P J. J. Toxicol. Environ. Health Part B., 2001, 4: 341.
[18] 袁跃华(Yuan Y H), 田茂忠(Tian M Z), 冯锋(Feng F), 孟双明(Meng S M), 白云峰(Bai Y F). 化学进展(Progress in Chemistry), 2010, 22(10): 1929.
[19] Dujols V, Ford F, Czarnik A W. J. Am. Chem. Soc., 1997, 119: 7386.
[20] Chen X Q, Jia J, Ma H M, Wang S J, Wang X C. Anal. Chim. Acta, 2009, 632: 9.
[21] Hua Z Q, Wang X M, Feng Y C, Ding L, Lu H Y. Dyes and Pigments, 2011, 88: 257.
[22] Kumar M, Kumar N, Bhalla V, Sharma P R, Kaur T. Org. Lett., 2011, 14: 406.
[23] Tang L J, Guo J J, Cao Y H, Zhao N. J. Fluoresc., 2012, 22: 1603.
[24] Wang J L, Li H, Long L P, Xiao G Q, Xie D. J. Lumin., 2012, 132: 2456.
[25] Xiang Y, Tong A J. J. Lumin., 2008, 23: 28.
[26] Yu M X, Shi M, Chen Z G, Li F Y, Li X X, Gao Y H, Xu J, Yang H, Zhou Z G, Yi T, Huang C H. Chem. Eur. J., 2008, 14: 6892.
[27] Huang L, Hou F P, Xi P X, Bai D C, Xu M, Li Z P, Xie G Q, Shi Y J, Liu H Y, Zeng Z Z. J. Inorg. Biochem., 2011, 105: 800.
[28] Ilobet J M, Falco G, Teixido A, Domingo J L. J. Agric. Food Chem., 2003, 51: 838.
[29] Harris H H, Pickering I J, George G N. Science, 2003, 301: 1203.
[30] Pandurangappa M, Kumar K S. Anal. Methods, 2011, 3: 715.
[31] Yang Y K, Ko S K, Shin I, Tae J. Org. Bio. Chem., 2009, 7: 4590.
[32] Liu W M, Xu L W, Zhang H Y, You J J, Zhang X L, Sheng R L, Li H P, Wu S K, Wang P F. Org. Bio. Chem., 2009, 7: 660.
[33] Wu J S, Hwang I C, Kim K S, Kim J S. Org. Lett., 2007, 9(5): 907.
[34] Zhang J F, Lim C S, Cho B R, Kim J S. Talanta, 2010, 83: 658.
[35] Xi P X, Huang L, Liu H, Jia P F, Chen F J, Xu M, Zeng Z Z. J. Biol. Inorg. Chem., 2009, 14: 815.
[36] Gong Y J, Zhang X B, Chen Z, Yuan Y, Jin Z, Mei L, Zhang J, Tan W H, Shen G L, Yu R Q. Analyst, 2012, 137: 932.
[37] Zhang D, Li M, Wang M, Wang J H, Yang X, Ye Y, Zhao Y F. Sensor and Actuat B, 2013, 177: 977.
[38] Hu Z Q, Zhuang W M, Li M, Liu M D, Wen L R, Li C X. Dyes and Pigments, 2013, 98: 286.
[39] Nishizawa M, Imagawa H, Yamamoto H. Org. Biomol. Chem., 2010, 8: 511.
[40] Lin W Y, Cao X W, Ding Y D, Yuan L, Long L L. Chem. Commun, 2010, 46: 3529.
[41] Zhu M, Yuan M, Liu X, Xu J, Lv J, Huang C. Org. Lett., 2008, 10: 1481.
[42] Coskun A, Yilmaz M D, Akkaya E U. Org. Lett., 2007, 9: 607.
[43] Avirah R R, Jyothish K, Ramaiah D. Org. Lett., 2007, 9: 121.
[44] Zhang X, Shiraishi Y, Hirai T. Org. Lett., 2007, 9: 5039.
[45] Wang L N, Yan J X, Qin W W, Liu W S, Wang R. Dyes and Pigments, 2012, 92: 1083.
[46] Du J J, Fan J L, Peng X J, Sun P P, Wang J Y, Li H L, Sun S G. Org. Lett., 2010, 12(3): 476.
[47] Shi W, Sun S N, Li X H, Ma H M. Inorg. Chem., 2010, 49: 1206.
[48] Autreáux B, Tucker N P, Dixon R, Spiro S A. Nature, 2005, 437: 769.
[49] Swaminathan S, Fonseca V A, Alam M G, Shah S V. Diabetes Care, 2007, 30: 1926.
[50] Galaris D, Skiada V, Barbouti A. Cancer Lett., 2008, 266: 21.
[51] Lee M H, Giap T V, Kim S H, Lee Y H, Kang C, Kim J S. Chem. Commun., 2010, 46: 1407.
[52] Chen X P, Hong H J, Han R, Zhang D, Ye Y, Zhao Y F. J. Fluoresc., 2012, 22: 789.
[53] Cho D G, Sessler J L. Chem. Soc. Rev., 2009, 38: 1647.
[54] Carey J S, Laffan D, Thomson C, Williams M T. Org. Biomol. Chem., 2006, 4: 2337.
[55] International Programme on Chemical Safety. Environmental Health Criteria Series 226-Palladium.2nd ed. Geneva: World Health Organization, 2002.
[56] Jun M E, Ahn K H. Org. Lett., 2010, 12: 2790.
[57] Asharani P V, Wu Y L, Gong Z, Valiyaveettil S. Nanotechnology, 2008, 19: 1.
[58] Chatterjee A, Santra M, Won N, Kim S J, Kim J K, Kim S B, Ahn K H. J. Am. Chem. Soc., 2009, 131: 2040.
[59] Danscher G. Histochem. Cell Biol., 2002, 117: 447.
[60] Goodman C M, McCusker C D, Yilmaz T, Rotello V M. Bioconjug. Chem., 2004, 15: 897.
[61] Habib A, Tabata M. J. Inorg. Biochem., 2004, 98: 1696.
[62] Nyarko E, Hara T, Grab D J, Habib A, Kim Y, Nikolskaia O, Fukuma T, Tabata M. Chem. Biol. Interact., 2004, 148: 19.
[63] Jou M J, Chen X Q, Swamy K M K, Kim H N, Kim H J, Lee S G, Yoon J Y. Chem. Commun, 2009, 7218.
[64] Yang Y K, Lee S H, Tae J S. Org. Lett., 2009, 11: 5610.
[65] Egorova O A, Seo H, Chatterjee A, Ahn K H. Org. Lett., 2010, 12: 401.
[66] Yuan L, Lin W Y, Yang Y T, Song J Z. Chem. Comm., 2011, 47: 4703.
[67] D'Autréaux B, Toledano M B. Nat. Rev. Mol. Cell. Biol., 2007, 8: 813.
[68] Oushiki D, Kojima H, Terai T, Arita M, Hanaoka K, Urano Y, Nagano T. J. Am. Chem. Soc., 2010, 132: 2795.
[69] Yap Y W, Whiteman M, Cheung N S. Cell Signal, 2007, 19: 219.
[70] Pattison D I, Davies M. J. Biochemistry, 2006, 45: 8152.
[71] Sugiyama S, Kugiyama K, Aikawa M, Nakamura S, Ogawa H, Libby P. Vasc. Biol., 2004, 24: 1309.
[72] Podrez E A, AbuSoud H M, Hazen S L. Free Radical Biol. Med., 2000, 28: 1717.
[73] Sun Z N, Liu F Q, Chen Y, Tam P K H, Yang D. Org. Lett., 2008, 10: 2171.
[74] Yang Y K, Cho H J, Lee J, Shin I, Tae J. Org. Lett., 2009, 11: 859.
[75] Zhan X Q, Yan J H, Su J H, Wang Y C, He J, Wang S Y, Zheng H, Xu J G. Sensor and Actuat B, 2010, 150: 774.
[76] Zhang Z, Zheng Y, Hang W, Yan X M, Zhao Y F. Talanta, 2011, 85: 779.
[77] Wei F F, Lu Y, He S, Zhao L C, Zeng X S. Anal. Methods, 2012, 4: 616.
[78] Zhang Y R, Chen X P, Shao J, Zhang J Y, Yuan Q, Miao J Y, Zhao B X. Chem. Commun, 2014, 50: 14241.
[79] Halliwell B, Gutteridge J M C. Free Radicals in Biology and Medicine. 2nd ed. NY: Oxford University Press, 1989.
[80] Yapici N B, Jockusch S, Moscatelli A, Mandalapu S R, Itagaki Y, Bates D K, Wiseman S, Gibson K M, Turro N J, Bi L. Org. Lett., 2012, 14: 50.
[81] Kim M, Ko S K, Kim H, Shin I, Tae J. Chem. Commun., 2013, 49: 7959.
[82] Paulsen C E, Carroll K S. ACS Chem. Biol., 2010, 5: 47.
[83] Galaris D, Skiada V, Barbouti A. Cancer Lett., 2008, 266: 21.
[84] Yuan L, Lin W Y, Xie Y N, Chen B, Zhu S S. J. Am. Chem. Soc., 2012, 134: 1305.
[85] Ratner A J, Prince A. Am. J. Respir. Cell Mol. Biol., 2006, 22: 642.
[86] McFeeters R F. J. Food Protect., 1998, 61: 885.
[87] Fazio T, Warner C R. Food Addit. Contam., 1990, 7: 433.
[88] Yang X F, Zhao M L, Wang G. Sensor and Actuat B, 2010, 152: 8.
[89] Banerjee A, Sahana A, Lohar S, Hauli I, Mukhopadhyay S K, Safin D A, Babashkina M G, Bolte M, Garcia Y, Das D. Chem. Commun., 2013, 49: 2527.
[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 刘振东, 潘嘉杰, 刘全兵. 机器学习在设计高性能锂电池正极材料与电解质中的应用[J]. 化学进展, 2023, 35(4): 577-592.
[6] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[7] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[8] 蒋昊洋, 熊丰, 覃木林, 高嵩, 何刘如懿, 邹如强. 用于电热转化、存储与利用的导电相变材料[J]. 化学进展, 2023, 35(3): 360-374.
[9] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[10] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[11] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[12] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[13] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[14] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[15] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
阅读次数
全文


摘要

反应型罗丹明类荧光探针