English
新闻公告
More
化学进展 2015, Vol. 27 Issue (8): 1110-1122 DOI: 10.7536/PC150161 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

锂离子电池锡-金属-碳复合负极材料

孟浩文, 马大千, 俞晓辉, 杨红艳, 孙艳丽, 许鑫华*   

  1. 天津大学材料科学与工程学院 天津市材料复合与功能化重点实验室 天津 300072
  • 收稿日期:2015-01-01 修回日期:2015-04-01 出版日期:2015-08-15 发布日期:2015-06-05
  • 通讯作者: 许鑫华 E-mail:xhxu_tju@eyou.com
  • 基金资助:
    国家自然科学基金项目(No. 51273145)资助

Tin-Metal-Carbon Composite Anode Materials for Lithium Ion Batteries

Meng Haowen, Ma Daqian, Yu Xiaohui, Yang Hongyan, Sun Yanli, Xu Xinhua*   

  1. School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
  • Received:2015-01-01 Revised:2015-04-01 Online:2015-08-15 Published:2015-06-05
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51273145).
石墨作为锂离子电池的负极材料已经使用了很长时间。但由于其嵌锂容量低,已不能满足动力电池快速发展的需求。而锡可以与锂形成合金,有可能取代石墨成为下一代锂离子电池负极材料。但是单纯的金属锡在电池循环过程中发生巨大的体积变化,容易导致电极材料的粉化。而碳材料具有较高的导电性,良好的机械性能和储锂性能。为了充分发挥金属锡和碳材料的优势,锡-碳(Sn-C)复合材料得到了广泛研究。本文详细介绍了无定型碳、石墨(G)、石墨烯(GP)、碳纳米管(CNT)、碳纳米纤维(CNF)等碳材料作为惰性的导电基体与锡形成的二元复合物,阐述了锡与其它金属(M)形成的碳基三元、多元复合物的结构和性能。通过总结近些年对锡碳复合物结构与性能的研究,相信多元复合和多种结构的应用是提高锡-碳复合负极材料的关键。其中,以Sn-Co-C为基础的多元复合负极材料最有可能走向市场应用。
Graphite has been used as the negative electrode in lithium ion batteries for more than a decade. But it cant meet the needs of power battery application due to the low specific capacity. To attain higher energy density batteries, tin, which can alloy reversibly with lithium, has been considered as a replacement for graphite. However, tin anodes always suffer from high volume changes during charge/discharge cycling, leading to premature degradation of the anode. Since carbonaceous materials exhibit high electrical conductivity, good mechanical compliance, and stable lithium storage capacities with a small volume expansion, people have paid more attention to them. In order to make full use of the advantages of both tin and carbon, different matrix phases are evaluated for tin-carbon (Sn-C) nanocomposites in this paper. Several carbonaceous materials including amorphous carbon, graphite (G), graphene (GP), carbon nanotubes (CNT), and carbon nanofibers (CNF) have been exploited as an inert and conductive matrix in Sn-based anode materials, thus providing various tin-carbon composite anode materials. After reviewing that , the focus turns to alloys of tin with metal (M) and carbon,forming ternary and multiple composite anode materials. Based on the progress that has already been made on the relationship between the properties and microstructures of Sn-carbon-based anodes, it is believed that manipulating the multi-phase and multi-scale structures could offer important means for further improving the capacity and cyclability of Sn anodes. Overall, the Sn-Co-C-based composite anode materials may open the door to application.

Contents
1 Introduction
2 Sn-C binary composites
2.1 Sn-amorphous carbon
2.2 Sn-G
2.3 Sn-carbon nanomaterials
3 Sn-M-C
3.1 Sn-Co-C
3.2 Sn-Cu-C
3.3 Sn-Sb-C
4 Sn-Ms-C multiple composites
5 Conclusion

中图分类号: 

()
[1] Chang W S, Park C M, Sohn H J. J. Electroanal. Chem., 2012, 671: 67.
[2] Wen C J, Huggins R A. J. Electrochem. Soc., 1981, 128(6): 1181.
[3] Winter M, Besenhard J O, Spahr M E, Novák P. Adv. Mater., 1998, 10(10): 725.
[4] Besenhard J O, Yang J, Winter M. J. Power Sources, 1997, 68(1): 87.
[5] Courtney I A, Dahn J R. J. Electrochem. Soc., 1997, 144(9): 2943.
[6] Courtney I A, McKinnon W R, Dahn J R. J. Electrochem. Soc., 1999, 146(1): 59.
[7] Kamali A R, Fray D J. Rev. Adv. Mater. Sci., 2011, 27(1): 14.
[8] Wachtler M, Besenhard J O, Winter M. J. Power Sources, 2001, 94(2): 189.
[9] Liu S, Li Q, Chen Y, Zhang F. J. Alloys Compd., 2009, 478(1): 694.
[10] Cai Z, Xu L, Yan M, Han C, He L, Hercule K M, Niu C, Yuan Z, Xu W, Qu L, Zhao K, Mai L. Nano Lett., 2015, 15(1): 738.
[11] Bresser D, Mueller F, Buchholz D, Paillard E, Passerini S. Electrochim. Acta., 2014, 128: 163.
[12] Mouyane M, Ruiz J M, Artus M, Cassaignon S, Jolivet J P, Caillon G, Jordy C, Driesen K, Scoyer J, Stievano L, Olivier-Fourcade J, Jumas J C. J. Power Sources, 2011, 196(16): 6863.
[13] Wang J, Li D, Fan X, Gou L, Wang J, Li Y, Lu X, Li Q. J. Alloys Compd., 2012, 516: 33.
[14] Meschini I, Nobili F, Mancini M, Marassi R, Tossici R, Savoini A, Focarete M L, Croce F. J. Power Sources, 2013, 226: 241.
[15] Nobili F, Meschini I, Mancini M, Tossici R, Marassi R, Croce F. Electrochim. Acta., 2013, 107: 85.
[16] Chen J, Yang L, Fang S, Hirano S. Electrochem. Commun., 2011, 13(8): 848.
[17] Morishita T, Hirabayashi T, Okuni T, Ota N, Inagaki M. J. Power Sources, 2006, 160(1): 638.
[18] Xu Y, Liu Q, Zhu Y, Liu Y, Langrock A, Zachariah M R, Wang C. Nano Lett., 2013, 13(2): 470.
[19] Zhou X, Zou Y, Yang J. J. Solid State Chem., 2013, 198: 231.
[20] Li X, Dhanabalan A, Gu L, Wang C. Adv. Energy Mater., 2012, 2(2): 238.
[21] Lee Y, Kang Y M. J. Power Sources, 2011, 196(24): 10686.
[22] Fan X, Shao J, Xiao X, Wang X, Li S, Ge H, Chen L. Nano Energy, 2014, 9: 196.
[23] Wang G X, Ahn J H, Lindsay M J, Sun L, Bradhurst D H, Dou S X, Liu H K. J. Power Sources, 2001, 97: 211.
[24] Balan L, Schneider R, Willmann P, Billaud D. J. Power Sources, 2006, 161(1): 587.
[25] Lin Y S, Duh J G, Shieh D T, Yang M H. J. Alloys Compd., 2010, 490(1/2): 393.
[26] Morishita T, Hirabayashi T, Okuni T, Ota N, Inagaki M. J. Power Sources, 2006, 160(1): 638.
[27] Zheng X, Lv W, He Y B, Zhang C, Wei W, Tao Y, Li B, Yang Q H. J. Nanomater., 2014, 2014.
[28] Nabais C, Schneider R, Willmann P, Billaud D. Energy Convers. Manage., 2012, 56: 32.
[29] Wang Y, Li B, Zhang C, Tao H, Kang S, Jiang S, Li X. J. Power Sources, 2012, 219: 89.
[30] Grigoriants I, Sominski L, Li H, Ifargan I, Aurbach D, Gedanken A. Chem. Commun., 2005(7): 921.
[31] Nobili F, Tossici R, Croce F, Scrosati B, Marassi R. J. Power Sources, 2001, 94(2): 238.
[32] Nobili F, Mancini M, Dsoke S, Tossici R, Marassi R. J. Power Sources, 2010, 195(20): 7090.
[33] Nobili F, Mancini M, Stallworth P E, Croce F, Greenbaum S G, Marassi R. J. Power Sources, 2012, 198: 243.
[34] Chen S, Wang Y, Ahn H, Wang G. J. Power Sources, 2012, 216: 22.
[35] Zhou X, Zou Y, Yang J. J. Power Sources, 2014, 253: 287.
[36] Lian P, Wang J, Cai D, Liu G, Wang Y, Wang H. J. Alloys Compd., 2014, 604: 188.
[37] Wang D, Li X, Yang J, Wang J, Geng D, Li R, Cai M, Sham T K, Sun X. Phys. Chem. Chem. Phys., 2013, 15(10): 3535.
[38] Beck F R, Epur R, Hong D, Manivannan A, Kumta P N. Electrochim. Acta, 2014, 127: 299.
[39] Liang S, Zhu X, Lian P, Yang W, Wang H. J. Solid State Chem., 2011, 184(6): 1400.
[40] Yue W, Yang S, Liu Y, Yang X. Mater. Res. Bull., 2013, 48(4): 1575.
[41] Zhu J, Wang D, Cao L, Liu T. J. Mater. Chem. A, 2014, 2(32): 12918.
[42] Luo B, Wang B, Li X, Jia Y, Liang M, Zhi L. Adv. Mater., 2012, 24(26): 3538.
[43] Ji L, Tan Z, Kuykendall T, An E J, Fu Y, Battaglia V, Zhang Y. Energy Environ. Sci., 2011, 4(9): 3611.
[44] Li Z, Lv W, Zhang C, Qin J, Wei W, Shao J, Wang D, Li B, Kang F, Yang Q. Nanoscale, 2014, 6(16): 9554.
[45] Wang C, Ju J, Yang Y, Tang Y, Bi H, Liao F, Lin J, Shi Z, Huang F, Han R P S. RSC Adv., 2013, 3(44): 21588.
[46] Li N, Song H, Cui H, Wang C. Nano Energy, 2014, 3: 102.
[47] Wang C, Li Y, Chui Y S, Wu Q H, Chen X, Zhang W. Nanoscale, 2013, 5(21): 10599.
[48] Wen Z, Cui S, Kim H, Mao S, Yu K, Lu G, Pu H, Mao O, Chen J. J. Mater. Chem., 2012, 22(8): 3300.
[49] Luo B, Wang B, Liang M, Ning J, Li X, Zhi L. Adv. Mater., 2012, 24(11): 1405.
[50] Zheng J W, Nai S M L, Ng M F, Wu P, Wei J, Gupta M. J. Phys. Chem. C, 2009, 113(31): 14015.
[51] Zhao B, Yadian B L, Li Z J, Liu P, Zhang Y F. Surf. Eng., 2009, 25(1): 31.
[52] Alaf M, Akbulut H. J. Power Sources, 2014, 247: 692.
[53] Menkin S, Barkay Z, Golodnitsky D, Peled E. J. Power Sources, 2014, 245: 345.
[54] Seo S D, Lee G H, Lim A H, Min K M, Kim J C, Shim H W, Park K S, Kim D W. RSC Adv., 2012, 2(8): 3315.
[55] Wu M, Wang C, Chen J, Wang F, Yi B. Ionics, 2013, 19(10): 1341.
[56] Liu W L, Hsieh S H, Chen W J. Appl. Surf. Sci., 2007, 253(20): 8356.
[57] Huang X, Chen J, Yu H, Peng S, Cai R, Yan Q, Hng H H. RSC Adv., 2013, 3(16): 5310.
[58] Wang Y, Wu M, Jiao Z, Lee J Y. Chem. Mater., 2009, 21(14): 3210.
[59] Jankovi L, Gournis D, Trikalitis P N, Arfaoui I, Cren T, Rudolf P, Sage M H, Palstra T T M, Kooi B, De Hosson J, Karakassides M A, Dimos K, Moukarika A, Bakas T. Nano Lett., 2006, 6(6): 1131.
[60] Li R, Sun X, Zhou X, Cai M, Sun X. J. Phys. Chem. C, 2007, 111(26): 9130.
[61] Zheng Y, Xie J, Song W, Liu S, Cao G, Zhao X. J. Mater. Res., 2011, 26(21): 2719.
[62] Lan C, Gong J, Jiang Y, Deng Y, Yang S. Physica E, 2012, 44(10): 2128.
[63] Li N, Song H, Cui H, Yang G, Wang C. J. Mater. Chem. A, 2014, 2(8): 2526.
[64] Zou Y, Wang Y. ACS Nano, 2011, 5(10): 8108.
[65] Li S, Chen C, Fu K, Xue L, Zhao C, Zhang S, Hu Y, Zhou L, Zhang X. Solid State Ionics, 2014, 254: 17.
[66] Shafiei M, Alpas A T. J. Power Sources, 2011, 196(18): 7771.
[67] Zou L, Gan L, Lv R, Wang M, Huang Z H, Kang F, Shen W. Carbon, 2011, 49(1): 89.
[68] Lee B S, Son S B, Park K M, Yu W R, Oh K H, Lee S H. J. Power Sources, 2012, 199: 53.
[69] Yu Y, Gu L, Wang C, Dhanabalan A, van Aken P A, Maier J. Angew. Chem. Int. Ed., 2009, 48(35): 6485.
[70] Yu Y, Yang Q, Teng D, Yang X, Ryu S. Electrochem. Chmmun., 2010, 12(9): 1187.
[71] Zou L, Gan L, Kang F, Wang M, Shen W, Huang Z. J. Power Sources, 2010, 195(4): 1216.
[72] Wang H, Gao P, Lu S, Liu H, Yang G, Pinto J, Jiang X. Electrochim. Acta, 2011, 58: 44.
[73] Xia X, Wang X, Zhou H, Niu X, Xue L, Zhang X, Wei Q. Electrochim. Acta, 2014, 121: 345.
[74] Sun Z, Zussman E, Yarin A L, Wendorff J H, Greiner A. Adv. Mater., 2003, 15(22): 1929.
[75] Zussman E, Yarin A L, Bazilevsky A V, Avrahami R, Feldman M. Adv. Mater., 2006, 18(3): 348.
[76] Park C M, Kim J H, Kim H, Sohn H J. Chem. Soc. Rev., 2010, 39(8): 3115.
[77] Huang T, Yao Y, Wei Z, Liu Z, Yu A. Electrochim. Acta, 2010, 56(1): 476.
[78] Tarascon J M, Armand M. Nature., 2001, 414(6861): 359.
[79] Julien C M. Mater. Sci. Eng., R., 2003, 40(2): 47.
[80] Todd A D W, Ferguson P P, Fleischauer M D, Dahn J R. Int. J. Energ Res., 2010, 34(6): 535.
[81] Ferguson P P, Todd A D W, Dahn J R. Electrochem. Chmmun., 2008, 10(1): 25.
[82] Ferguson P P, Todd A D W, Martine M L, Dahn J R. J. Electrochem. Soc., 2013, 161(3): A342.
[83] Todd A D W, Ferguson P P, Barker J G, Fleischauer M D, Dahn J R. J. Electrochem. Soc., 2009, 156(12): A1034.
[84] Ferguson P P, Martine M L, Dunlap R A, Dahn J R. Electrochim. Acta, 2009, 54(19): 4534.
[85] Ferguson P P, Rajora M, Dunlap R A, Dahn J R. J. Electrochem. Soc., 2009, 156(3): A204.
[86] Zhou F, Zhao X, Ferguso Dń P P, Thorne J S, Dunlap R A, Dahn J R. J. Electrochem. Soc., 2008, 155(12): A921.
[87] Thorne J S, Ferguson P P, Dunlap R A, Dahn J R. J. Alloys Compd., 2009, 472(1/2): 390.
[88] Cui W, Wang F, Wang J, Wang C, Xia Y. Electrochim. Acta, 2011, 56(13): 4812.
[89] Li M Y, Liu C L, Shi M R, Dong W S. Electrochim. Acta., 2011, 56(8): 3023.
[90] Chen Z, Qian J, Ai X, Cao Y, Yang H. J. Power Sources, 2009, 189(1): 730.
[91] Gu Y, Wu F, Wang Y. Adv. Funct. Mater., 2013, 23(7): 893.
[92] Wang Y, Lee J Y. Angew. Chem. Int. Ed., 2006, 45(42): 7039.
[93] Huang L, Cai J S, He Y, Ke F S, Sun S G. Electrochem. Chmmun., 2009, 11(5): 950.
[94] Lu W, Luo C, Li Y, Feng Y, Feng W, Zhao Y, Yuan X. J. Nanopart. Res., 2013, 15(9): 1.
[95] Cui W J, Li F, Liu H J, Wang C X, Xia Y Y. J. Mater. Chem., 2009, 19(39): 7202.
[96] Chen J, Yang L, Fang S, Zhang Z, Hirano S I. Electrochim. Acta., 2013, 105: 629.
[97] Lei W X, Pan Y, Zhou Y C, Zhou W, Peng M L, Ma Z S. RSC Adv., 2013, 4(7): 3233.
[98] Thorne J S, Dahn J R, Obrovac M N, Dunlap R A. J. Power Sources, 2012, 216: 139.
[99] Thorne J S, Dahn J R, Obrovac M N, Dunlap R A. J. Electrochem. Soc., 2011, 158(12): A1328.
[100] Ferguson P P, Dunlap R A, Dahn J R. J. Electrochem. Soc., 2010, 157(3): A326.
[101] Thorne J S, Sanderson R J, Dahn J R, Dunlap R A. J. Electrochem. Soc., 2010, 157(10): A1085.
[102] Thorne J S, Dahn J R, Obrovac M N, Dunlap R A. J. Alloys Compd., 2011, 509(23): 6705.
[103] Li J, Ru Q, Hu S, Sun D, Zhang B, Hou X. Electrochim. Acta., 2013, 113: 505.
[104] Hassoun J, Derien G, Panero S, Scrosati B. Electrochim. Acta, 2009, 54(19): 4441.
[105] Park M S, Needham S A, Wang G X, Kang Y M, Park J S, Dou S X, Liu H K. Chem. Mater., 2007, 19(10): 2406.
[106] Park C M, Sohn H J. Electrochim. Acta., 2009, 54(26): 6367.
[107] 褚道葆(Chu D B), 李建(Li J), 袁希梅(Yuan X M), 李自龙(Li Z L), 魏旭(Wei X), 万勇(Wan Y). 化学进展(Progress in Chemistry), 2012, 24(08): 1466.
[108] Wachtler M, Winter M, Besenhard J O. J. Power Sources, 2002, 105(2): 151.
[109] Park C M, Jeon K J. Chem. Commun., 2011, 47(7): 2122.
[110] Chen S, Chen P, Wu M, Pan D, Wang Y., Electrochem. Chmmun., 2010, 12(10): 1302.
[111] Hu R, Liu H, Zeng M, Wang H, Zhu M. J. Mater. Chem., 2011, 21(12): 4629.
[112] Edfouf Z, Fariaut-Georges C, Cuevas F, Latroche M, Hézèque T, Caillon G, Jordy C, Sougrati M T, Jumas J C. Electrochim. Acta, 2013, 89: 365.
[113] Li J, Wu P, Tang Y, Xu X, Zhou Y, Chen Y, Lu T. CrystEngComm, 2013, 15(47): 10340.
[114] Wang X, Wen Z, Lin B, Lin J, Wu X, Xu X. J. Power Sources, 2008, 184(2): 508.
[115] Yang H, Li L. J. Alloys Compd., 2014, 584: 76.
[116] Zhang R, Fang G, Liu W, Xia B, Sun H, Zheng J, Li D. Appl. Surf. Sci., 2014, 292: 682.
[117] Fan L, Zhu Y, Zhang J, Liang J, Wang L, Wei D, Li X, Qian Y. Electrochim. Acta., 2014, 121: 21.
[118] 胡仁宗(Hu R Z), 杨黎春(Yang L C), 朱敏(Zhu M). 科学通报(Chinese Science Bulletin), 2013, 58(31): 3140.
[119] Ferguson P P, Martine M L, George A E, Dahn J R. J. Power Sources, 2009, 194(2): 794.
[120] Ferguson P P, Liao P, Dunlap R A, Dahn J R. J. Electrochem. Soc., 2009, 156(1): A13.
[121] Liang Z, Yang S. J. Mater. Sci. Technol., 2010, 26(7): 653.
[122] Yoon S, Manthiram A. J. Mater. Chem., 2009, 20(2): 236.
[123] Yoon S, Manthiram A. Electrochim. Acta., 2011, 56(8): 3029.
[124] Applestone D, Manthiram A. RSC Adv., 2012, 2(12): 5411.
[125] Edfouf Z, Cuevas F, Latroche M, Georges C, Jordy C, Hézèque T, Caillon G, Jumas J C, Sougrati M T. J. Power Sources, 2011, 196(10): 4762.
[126] Edfouf Z, Sougrati M T, Fariaut-Georges C, Cuevas F, Jumas J C, Hézèque T, Jordy C, Caillon G, Latroche M. J. Power Sources, 2013, 238: 210.
[127] Zhong Y, Zhang Y, Cai M, Balogh M P, Li R, Sun X. Appl. Surf. Sci., 2013, 270: 722.
[128] Li X, Zhong Y, Cai M, Balogh M P, Wang D, Zhang Y, Li R, Sun X. Electrochim. Acta, 2013, 89: 387.
[1] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[2] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[3] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[4] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[5] 赵晓竹, 李雯, 赵学瑞, 何乃普, 李超, 张学辉. MOFs在乳液中的可控生长[J]. 化学进展, 2023, 35(1): 157-167.
[6] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[7] 戚琦, 徐佩珠, 田志东, 孙伟, 刘杨杰, 胡翔. 钠离子混合电容器电极材料的研究进展[J]. 化学进展, 2022, 34(9): 2051-2062.
[8] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[9] 冯海弟, 赵璐, 白云峰, 冯锋. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1878.
[10] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[11] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[12] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[13] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[14] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[15] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.