English
新闻公告
More
化学进展 2015, Vol. 27 Issue (8): 1123-1132 DOI: 10.7536/PC141233 前一篇   后一篇

• 综述与评论 •

电-Fenton及类电-Fenton技术处理水中有机污染物

林恒, 张晖*   

  1. 武汉大学环境工程系 武汉 430079
  • 收稿日期:2014-12-01 修回日期:2015-04-01 出版日期:2015-08-15 发布日期:2015-06-05
  • 通讯作者: 张晖 E-mail:eeng@whu.edu.cn
  • 基金资助:
    国家高技术研究发展计划(No. 2008AA06Z332)、武汉市科技局“科技攻关计划”(No. 201060723313)和中央高校基本科研业务费专项资金项目(2012205020207)资助

Treatment of Organic Pollutants Using Electro-Fenton and Electro-Fenton-Like Process in Aqueous Solution

Lin Heng, Zhang Hui*   

  1. Department of Environmental Engineering, Wuhan University, Wuhan 430079, China
  • Received:2014-12-01 Revised:2015-04-01 Online:2015-08-15 Published:2015-06-05
  • Supported by:
    The work was supported by the National High?Tech R&D Program of China (No. 2008AA06Z332), Wuhan Science and Technology Bureau through “The Gongguan Project”(No. 201060723313), and the Fundamental Research Funds for the Central Universities (No. 2012205020207).
传统Fenton技术是一种广泛用于水体里有机污染物降解的高级氧化技术(advanced oxidation technologies, AOTs)。它利用Fenton试剂Fe2+与H2O2反应生成具有强氧化性的羟基自由基(·OH),从而降解有机污染物。基于相似的机理,过渡金属离子(Fe2+、Co2+和Ag+等)也可与过硫酸盐反应生成氧化能力较强的硫酸根自由基(SO4·-),而被称之为类Fenton技术。传统Fenton技术存在Fe2+投加量多,产生的铁污泥多等缺点,因此,有学者将Fenton技术与电化学技术结合,使Fe2+在阴极得以持续再生,这就是广为关注的电-Fenton技术。同样地,类Fenton技术也遇到与传统Fenton技术相似的问题。借鉴电-Fenton技术的成功应用,基于硫酸根自由基的类电-Fenton技术应运而生。本文在介绍电-Fenton和类电-Fenton技术原理的基础上,概括了电-Fenton和类电-Fenton技术的主要类型及其改进方法,并就值得深入研究的问题和热点趋势进行了展望。
Conventional Fenton process is one of the promising advanced oxidation technologies (AOTs) for the treatment of organic pollutants in water. In Fenton process, hydroxyl radical (·OH), a kind of strong oxidant, is formed through Fenton's reaction and then degrades organic pollutants. Similar to conventional Fenton process, transition metal ions (Fe2+, Co2+, Ag+, etc.) can also activate persulfate (PS) and generate sulfate radicals (SO4·-, SR). Sulfate radical is a powerful oxidant and can oxidize most of organic pollutants. This process is named as “Fenton-like process”. There are some disadvantages existed in conventional Fenton and Fenton-like process. For example, a high concentration of Fe2+ is required and a large amount of iron sludge is generated. In order to solve these problems, electro-Fenton and SR-based electro-Fenton-like processes are proposed. Fe2+ can be regenerated via cathodic reduction in electro-Fenton and electro-Fenton-like processes. Therefore, the Fe2+ concentration used in these processes is much lower than that in Fenton and Fenton-like processes. This paper provides an overview of mechanism and research progress of electro-Fenton and SR-based electro-Fenton-like processes. The types and improvements for electro-Fenton and electro-Fenton-like processes are summarized. Moreover, the prospects of the research areas meriting further investigation and developed trends are pointed out.

Contents
1 Introduction
2 Electro-Fenton process
2.1 Types of electro-Fenton processes
2.2 Improvements in electro-Fenton processes
3 Electro-Fenton-like process
3.1 Types of electro-Fenton-like processes
3.2 The effect of important parameters on electro-Fenon-like processes
3.3 Improvements in electro-Fenton-like processes
4 Comparison of oxidation mechanism
5 Conclusion and perspective

中图分类号: 

()
[1] Ayoub K, van Hullebusch E D, Cassir M, Bermond A. J. Hazard. Mater., 2010, 178(1/3): 10.
[2] Bautista P, Mohedano A F, Casas J A, Zazo J A, Rodriguez J J. J. Chem. Technol. Biotechnol., 2008, 83(10): 1323.
[3] Nidheesh P, Gandhimathi R, Ramesh S. Environ. Sci. Pollut. Res., 2013, 20(4): 2099.
[4] Chou S, Huang Y H, Lee S N, Huang G H, Huang C. Water Res., 1999, 33(3): 751.
[5] Jiang C C, Zhang J F. J. Zhejiang Univ. Sci. A, 2007, 8(7): 1118.
[6] Xu X R, Li X Z. Sep. Purif. Technol., 2010, 72(1): 105.
[7] Anipsitakis G P, Dionysiou D D. Appl. Catal., B, 2004, 54(3): 155.
[8] Chen X Y, Qiao X L, Wang D G, Lin J, Chen J W. Chemosphere, 2007, 67(4): 802.
[9] Gong Y, Lin L. Molecules, 2011, 16(3): 2714.
[10] Long A H, Lei Y, Zhang H. Ind. Eng. Chem. Res., 2013, 53(3): 1033.
[11] Zhou D N, Zhang H, Chen L. J. Chem. Technol. Biotechnol., 2014, 90(5): 775.
[12] 杨世迎(Yang S Y), 陈友媛(Chen Y Y), 胥慧真(Xu H Z), 王萍(Wang P), 刘玉红(Liu Y H). 王茂东(Wang M D),化学进展(Progress in Chemistry), 2008, 20(9): 1433.
[13] Fernandez J, Maruthamuthu P, Renken A, Kiwi J. Appl. Catal., B, 2004, 49(3): 207.
[14] Fernandez J, Nadtochenko V, Kiwi J. Chem. Commun., 2003, 18: 2382.
[15] Wu J, Zhang H, Qiu J J. J. Hazard. Mater., 2012, 215/216: 138.
[16] Wang Y R, Chu W. Water Res., 2011, 45(13): 3883.
[17] Brillas E, Sireés I, Oturan M A. Chem. Rev., 2009, 109(12): 6570.
[18] Nidheesh P V, Gandhimathi R. Desalin. Water Treat., 2014, 52(10/12): 1872.
[19] Oturan N, Hamza M, Ammar S, Abdelhédi R, Oturan M A. J. Electroanal. Chem., 2011, 661(1): 66.
[20] Panizza M, Cerisola G, Appl. Catal., B, 2007, 75(1/2): 95.
[21] Zhou M H, Särkkä H, Sillanpää M. Sep. Purif. Technol., 2011, 78(3): 290.
[22] Dirany A, Sirés I, Oturan N, Özcan A, Oturan M A. Environ. Sci. Technol., 2012, 46(7): 4074.
[23] Zhang H, Fei C Z, Zhang D B, Tang F. J. Hazard. Mater., 2007, 145(1/2): 227.
[24] 张晖(Zhang H), 蒋明(Jiang M), 费成志(Fei C Z), 张道斌(Zhang D B). 化工学报(Journal of Chemical Industry and Engineering), 2008, 59(3): 597.
[25] Zhang H, Cheng Z H, Zhang D B. Fresenius Environ. Bull., 2007, 16(9): 1216.
[26] Zhang H, Ran X N, Wu X G. J. Hazard. Mater., 2012, 241/242: 259.
[27] Zhang H, Wu X G, Li X W. Chem. Eng. J., 2012, 210: 188.
[28] Zhang H, Zhang D B, Zhou J Y. J. Hazard. Mater., 2006, 135(1/3): 106.
[29] 解清杰(Xie Q J), 卢娜(Lu N), 王琳玲(Wang L L), 陆晓华(Lu X H). 水处理技术(Technology of Water Treatment), 2005, 31(11): 58.
[30] Özcan A, ?ahin Y, Koparal A S, Oturan M A. J. Hazard. Mater., 2008, 153(1/2): 718.
[31] Anotai J, Singhadech S, Su C C, Lu M C. J. Hazard. Mater., 2011, 196: 395.
[32] Garcia-Segura S, Garrido J A, Rodríguez R M, Cabot P L, Centellas F, Arias C, Brillas E. Water Res., 2012, 46(7): 2067.
[33] Zhang H, Li Y L, Wu X G. J. Environ. Eng., 2012, 138(SI): 278.
[34] Brillas E, Baños M Á, Skoumal M, Cabot P L, Garrido J A, Rodríguez R M. Chemosphere, 2007, 68(2): 199.
[35] Zhang H, Li Y L, Zhong X, Ran X N. Water Sci. Technol., 2011, 63(7): 1373.
[36] Zhong X, Royer S, Zhang H, Huang Q Q, Xiang L J, Valange S, Barrault J. Sep. Purif. Technol., 2011, 80(1): 163.
[37] He J, Yang X F, Men B, Bi Z, Pu Y, Wang D S. Chem. Eng. J., 2014, 258: 433.
[38] Zubir N A, Yacou C, Zhang X, Diniz da Costa J C. J. Environ. Chem. Eng., 2014, 2(3): 1881.
[39] Liao Q, Sun J, Gao L. Colloids Surf. A, 2009, 345(1/3): 95.
[40] Garrido-Ramírez E G, Mora M L, Marco J F, Ureta-Zañartu M S. Appl. Clay Sci., 2013, 86: 153.
[41] Iglesias O, Gómez J, Pazos M, Sanromán M Á. Appl. Catal., B, 2014, 144: 416.
[42] Luo M S, Yuan S H, Tong M, Liao P, Xie W j, Xu X F. Water Res., 2014, 48: 190.
[43] Yuan S H, Mao X H, Alshawabkeh A N. Environ. Sci. Technol., 2012, 46(6): 3398.
[44] Shukla P R, Wang S B, Ang H M, Tadé M O. Sep. Purif. Technol., 2010, 70(3): 338.
[45] Wang X, Wang L G, Li J B, Qiu J J, Cai C, Zhang H. Sep. Purif. Technol., 2014, 122: 41.
[46] Cai C, Wang L G, Gao H, Hou L W, Zhang H. J. Environ. Sci., 2014, 26(6): 1267.
[47] 龙安华(Long A H), 雷洋(Lei Y), 张晖(Zhang H).化学进展(Progress in Chemistry), 2014, 26(5): 898.
[48] Tsitonaki A, Petri B, Crimi M, MosbK H, Siegrist R L, Bjerg P L. Crit. Rev. Env. Sci. Technol., 2010, 40(1): 55
[49] Yukselen-Aksoy Y, Khodadoust A, Reddy K. Water Air Soil Pollut., 2010, 209(1/4): 419.
[50] Wang Y R, Chu W. Appl. Catal., B, 2012, 123-124: 151.
[51] Pagano M, Volpe A, Mascolo G, Lopez A, Locaputo, V, Ciannarella R. Chemosphere, 2012, 86(4): 329.
[52] Zhao J Y, Zhang Y B, Quan X, Chen S. Sep. Purif. Technol., 2012, 71(3): 302.
[53] Romero A, Santos A, Vicente F, González C. Chem. Eng. J., 2010, 162(1): 257.
[54] Zhou G L, Sun H Q, Wang S B, Ming Ang H, Tadé M O. Sep. Purif. Technol., 2011, 80(3): 626.
[55] Andreozzi R, Caprio V, Marotta R, Vogna D. Water Res., 2003, 37(5): 993.
[56] Liang C J, Wang Z S, Bruell C J. Chemosphere, 2007, 66(1): 106.
[57] Zhang H, Wang Z, Liu C H, Guo Y Z, Shan N, Meng C X, Sun L Y. Chem. Eng. J., 2014, 250: 76.
[58] Yuan S H, Liao P, Alshawabkeh A N. Environ. Sci. Technol., 2013, 48(1): 656.
[59] Lin H, Wu J, Zhang H. Sep. Purif. Technol., 2013, 117: 18.
[60] Lin H, Wu J, Zhang H. Chem. Eng. J., 2014, 244: 514.
[61] Olmez-Hanci T, Imren C, Kabdasli I, Tunay O, Arslan-Alaton I. Photochem. Photobiol. Sci., 2011, 10(3): 408.
[62] Kusic H, Peternel I, Ukic S, Koprivanac N, Bolanca T, Papic S, Bozic A L. Chem. Eng. J., 2011, 172(1): 109.
[63] Hori H, Yamamoto A, Hayakawa E, Taniyasu S, Yamashita N, Kutsuna S, Kiatagawa H, Arakawa R. Environ. Sci. Technol., 2005, 39(7): 2383.
[64] Rastogi A, Al-Abed S R, Dionysiou D D. Appl. Catal., B, 2009, 85(3/4): 171.
[65] Wang Y R, Chu W. Chem. Eng. J., 2013, 215/216: 643.
[66] Lin H, Zhang H, Hou L W. J. Hazard. Mater., 2014, 276: 182.
[67] Cai C, Zhang H, Zhong X, Hou L W. Water Res., 2014, 66: 473.
[68] Sadik W A. J. Photochem. Photobiol. A: Chem., 2007, 191(2/3): 132.
[69] Pignatello J J, Oliveros E, MacKay A. Crit. Rev. Env. Sci. Technol., 2006, 36 (1): 1.
[70] 晏井春(Yan J C). 华中科技大学博士论文(Doctoral Dissertation of Huazhong University of Science and Technology), 2012.
[71] Long A H, Zhang H. Environ. Sci. Pollut. Res., 2015, DOI 10.1007/s11356-015-4406-x.
[72] Antoniou M G, De la Cruz A A, Dionysiou D D. Appl. Catal., B, 2010, 96(3/4): 290.
[73] Georgi A, Kopinke F D. Appl. Catal., B, 2005, 58(1/2): 9.
[1] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[2] 高文艳, 赵玄, 周曦琳, 宋雅然, 张庆瑞. 提高非均相芬顿催化活性策略、研究进展及启示[J]. 化学进展, 2022, 34(5): 1191-1202.
[3] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[4] 王楠, 周宇齐, 姜子叶, 吕田钰, 林进, 宋洲, 朱丽华. 还原-氧化协同降解全/多卤代有机污染物[J]. 化学进展, 2022, 34(12): 2667-2685.
[5] 韩文亮, 董林洋. 基于硫酸根自由基的先进氧化活化方法及其在有机污染物降解上的应用[J]. 化学进展, 2021, 33(8): 1426-1439.
[6] 张静, 王定祥, 张宏龙. 高价锰、铁去除水中新兴有机污染物[J]. 化学进展, 2021, 33(7): 1201-1211.
[7] 衣晓虹, 王崇臣. 铁基金属-有机骨架及其复合物高级氧化降解水中新兴有机污染物[J]. 化学进展, 2021, 33(3): 471-489.
[8] 钟来进, 唐直婕, 胡忻, 练鸿振. 大气颗粒物中有害成分的吸入生物可给性研究[J]. 化学进展, 2021, 33(10): 1766-1779.
[9] 谷麟, 章凯, 俞海祥, 董光霞, 乔兴博, 闻海峰. 污泥碳基催化材料的合成及在水环境中的应用[J]. 化学进展, 2020, 32(9): 1412-1426.
[10] 王均凤, 王毅霖, 张晓飞, 王道广, 李亚辉, 何宏艳, 李兴春, 张锁江. 炼化反渗透浓水中有机物处理技术[J]. 化学进展, 2020, 32(10): 1462-1481.
[11] 刘玥, 吴忆涵, 庞宏伟, 王祥学, 于淑君, 王祥科. 石墨相氮化碳材料在水环境污染物去除中的研究[J]. 化学进展, 2019, 31(6): 831-846.
[12] 朱本占, 谢琳娜, 沈忱, 高慧颖, 朱丽雅, 毛莉. 卤代芳烃化学发光的结构效应、分子机制及其应用[J]. 化学进展, 2017, 29(9): 930-942.
[13] 鲍恋君, 郭英, 刘良英, 曾永平*. 珠江三角洲典型有机污染物的环境行为及人群暴露风险[J]. 化学进展, 2017, 29(9): 943-961.
[14] 殷立, 徐剑桥*, 黄周兵, 陈国胜, 郑娟, 欧阳钢锋*. 基于新型材料的固相微萃取探针的制备与应用[J]. 化学进展, 2017, 29(9): 1127-1141.
[15] 刘国瑞, 李丽, 孙素芳, 姜晓旭, 王美, 郑明辉. 多溴联苯的污染来源、分析方法和环境污染特征[J]. 化学进展, 2014, 26(08): 1434-1444.