English
新闻公告
More
化学进展 2014, Vol. 26 Issue (08): 1434-1444 DOI: 10.7536/PC140335 前一篇   

• 综述与评论 •

多溴联苯的污染来源、分析方法和环境污染特征

刘国瑞1, 李丽1,2, 孙素芳2, 姜晓旭1, 王美1, 郑明辉*1   

  1. 1. 中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室 北京 100085;
    2. 河北大学化学与环境科学学院 保定 071002
  • 收稿日期:2014-03-01 修回日期:2014-04-01 出版日期:2014-08-15 发布日期:2014-06-10
  • 通讯作者: 郑明辉 E-mail:zhengmh@rcees.ac.cn
  • 基金资助:

    中国科学院院地合作项目、 国家自然科学基金青年基金项目(No. 21107123)和生态环境研究中心青年基金(RCEES-QN-20130002)资助

Sources, Analytical Methods and Environmental Characteristics of Polybrominated Biphenyls

Liu Guorui1, Li Li1,2, Sun Sufang2, Jiang Xiaoxu1, Wang Mei1, Zheng Minghui*1   

  1. 1. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
    2. College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
  • Received:2014-03-01 Revised:2014-04-01 Online:2014-08-15 Published:2014-06-10
  • Supported by:

    The work was supported by the Project of Academy (Chinese Academy of Sciences) -Location (Guizhou province) Cooperation launched in 2012, the National Natural Science Foundation of China (No. 21107123) and the Young Scientist Fund of RCEES (RCEES-QN-20130002)

多溴联苯(polybrominated biphenyls,PBBs)是一类曾被广泛使用的溴代阻燃剂,这类化学物质具有半挥发性,能够远距离迁移,可在环境中持久存在,并且能够在生物体内累积和放大,对全球环境和人类健康构成潜在的危害。2009年,《关于持久性有机污染物的斯德哥尔摩公约》新POPs审查委员会将六溴联苯商业产品列入其附件A,禁止六溴联苯的工业生产和使用。因此,近期对环境中多溴联苯的来源、分析方法和污染水平等相关研究引起了广泛的关注。本文介绍了PBBs的基本理化性质和毒性,对作为溴代阻燃剂的PBBs的生产量进行归纳,并提出需要开展深入和广泛研究来认识是否在工业生产过程中存在PBBs的非故意生成和排放,对当前环境中PBBs的分析方法进行了总结,并对PBBs当前的环境污染水平和污染特征进行了简要概述,最后对PBBs相关的未来研究进行了初步展望。

Polybrominated biphenyls (PBBs) had been widely produced and used as commercial chemicals including additive brominated flame retardants (BFRs) from 1970 to 2000. PBBs are highly toxic, lipophilic and bioaccumulative organic compounds. Owing to their persistence and semi-volatility, PBBs could transport long distance and thus pose potential risk to global environment and human health. Commercial hexabrominated biphenyls (technical Hexa-BBs) have been listed in the Annex A covered under Stockholm Convention on Persistent Organic Pollutants in 2009 for banning the manufacture and use of technical Hexa-BBs. Thus, the sources, analytical methods and environmental occurrence of PBBs have recently attracted increasing attentions. This paper summarizes the basic physico-chemical properties and toxicity of PBBs. The amounts of technical PBBs produced as commercial chemicals including BFRs in history are also summarized. The release of PBBs during dismantling of E-waste as one of important sources is also discussed. We also suggest that further study should be carried out to investigate if there is unintentional formation and emission of PBBs during industrial thermal processes. The research progress on analytical methods, quality assurance and quality control (QA/QC) used for identification and quantification of PBBs are also reviewed and discussed. The occurrence and profiles of PBBs in various matrices from contamination sites of Michigan accident, E-waste dismantling area, and polar area are also reviewed and discussed.

Contents
1 Introduction
2 Basic physico-chemical properties and toxicity of PBBs
2.1 Basic physico-chemical properties of PBBs
2.2 Toxicity of PBBs
3 Major sources of PBBs
3.1 Manufacture, use and release of PBBs
3.2 Unintentional emissions of PBBs from industrial sources
4 Analytical methods of PBBs
4.1 Sample extraction and purification of PBBs
4.2 Instrumental analytical technique
4.3 Quality assurance and quality control
5 Occurrence of PBBs in various matrices
5.1 Contamination levels of PBBs in samples from PBBs contamination accident area
5.2 Contamination levels of PBBs in samples from E-waste dismantling area
5.3 Contamination levels of PBBs in polar area and other regions
6 Conclusion and outlook

中图分类号: 

()

[1] de Wit C A. Chemosphere, 2002, 46: 583.
[2] Verreault J, Gebbink W A, Gauthier L T, Gabrielsen G W, Letcher R J. Environ. Sci. Technol., 2007, 41: 4925.
[3] Luross J M, Alaee M, Sergeant D B, Cannon C M, Whittle D M, Solomon K R, Muir D C G. Chemosphere, 2002, 46: 665.
[4] de Wit C A, Alaee M, Muir D C G. Chemosphere, 2006, 64: 209.
[5] de Wit C A, Herzke D, Vorkamp K. Sci. Total Environ., 2010, 408: 2885.
[6] Safe S. Critical Reviews in Toxicology, 1984, 13: 319.
[7] Hakk H, Letcher R J. Environ. Int., 2003, 29: 801.
[8] Jacobson J L, Fein G G, Jacobson S W, Schwartz P M, Dowler J K. Am. J. Public Health, 1984, 74: 378.
[9] Jacobson J L, Humphrey H E B, Jacobson S W, Schantz S L, Mullin M D, Welch R. Am. J. Public Health, 1989, 79: 1401.
[10] Kimbrough R D. Annu. Rev. Pharmacool. Toxicol., 1987, 27: 87.
[11] Tanabe S, Ramu K, Isobe T, Takahashi S. J. Environ. Monit., 2008, 10: 188.
[12] Vetter W, von der Reckel R, Symons R, Pyecroft S. Rapid Commun. Mass Spectrom., 2008, 22: 4165.
[13] de Boer J, de Boer K, Boon J. Anthropogenic Compounds Part K(Vol.3), 2000. 61.
[14] Authority E F S. EFSA Journal, 2010, 8: 1789.
[15] UNEP, POPS/POPRC.2/17/Add.3. 2006[2014-03-01] http://chm.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx/.
[16] de Boer J, Wester P G, Klamer H J C, Lewis W E, Boon J P. Nature, 1998, 394: 28.
[17] Braune B M, Mallory M L, Gilchrist H G, Letcher R J, Drouillard K G. Science of the Total Environment, 2007, 378: 403.
[18] UNEP, Consideration of chemicals proposed for inclusion in Annexes A, B and C of the Convention: hexabromobiphenyl, 2005, http://www.pops.int/documents/meetings/poprc/meeting_docs/en/.
[19] Lauby-Secretan B, Loomis D, Grosse Y, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Baan R, Mattock H, Straif K, Workin I A R C M. Lancet Oncol, 2013, 14: 287.
[20] Rosen D H, Flanders W D, Friede A, Humphrey H E B, Sinks T H. Environ. Health Perspect., 1995, 103: 272.
[21] Blanck H M, Marcus M, Hertzberg V, Tolbert P E, Rubin C, Henderson A K, Zhang R H. Environ. Health Perspect., 2000, 108: 147.
[22] Robertson L W, Parkinson A, Chittim B, Bandiera S, Sawyer T W, Safe S. Toxicology, 1981, 22: 103.
[23] Robertson L W, Parkinson A, Campbell M A, Safe S. Chem. Biol. Interact., 1982, 42: 53.
[24] Robertson L, Parkinson A, Safe S. Toxicol. Appl. Pharmacol., 1981, 57: 254.
[25] Behnisch P A, Hosoe K, Sakai S. Environment International, 2003, 29: 861.
[26] Organization W H, IPCS. Environmental Health Criteria, Geneva, 1994. 152.
[27] van den Berg M, Denison M S, Birnbaum L S, DeVito M J, Fiedler H, Falandysz J, Rose M, Schrenk D, Safe S, Tohyama C, Tritscher A, Tysklind M, Peterson R E. Toxicological Sciences, 2013, 133: 197.
[28] Robertson L W, Safe S H, Parkinson A, Pellizzari E, Pochini C, Mullin M D. J. Agric. Food. Chem., 1984, 32: 1107.
[29] Vetter W, von der Recke R, Herzke D, Nygard T. Environ. Pollut., 2008, 156: 1204.
[30] Alaee M, Arias P, Sjodin A, Bergman A. Environ. Int., 2003, 29: 683.
[31] Watanabe K, Senthilkumar K, Masunaga S, Takasuga T, Iseki N, Morita M. Environ. Sci. Technol., 2004, 38: 4071.
[32] Ni H, Zeng H, Tao S, Zeng E. Environ. Toxicol. Chem., 2010, 29: 1237.
[33] Zhang W H, Wu Y X, Simonnot M O. Pedosphere, 2012, 22: 434.
[34] Wang H M, Yu Y J, Han M, Yang S W, Ii Q, Yang Y. B Environ. Contam. Tox., 2009, 83: 789.
[35] Sun Y X, Luo X J, Mo L, Zhang Q, Wu J P, Chen S J, Zou F S, Mai B X. Environ. Pollut., 2012, 162: 381.
[36] Zhao G F, Zhou H D, Wang D H, Zha J M, Xu Y P, Rao K F, Ma M, Huang S B, Wang Z J. Sci. Total Environ., 2009, 407: 2565.
[37] Zheng X B, Wu J P, Luo X J, Zeng Y H, She Y Z, Mai B X. Environ. Int., 2012, 45: 122.
[38] Zhao G F, Wang Z J, Dong M H, Rao K F, Luo J P, Wang D H, Zha J M, Huang S B, Xu Y P, Ma M. Sci. Total Environ., 2008, 397: 46.
[39] Daso A P, Fatoki O S, Odendaal J P. Environmental Science and Pollution Research, 2013, 20: 5168.
[40] Hanari N, Kannan K, Miyake Y, Okazawa T, Kodavanti P R S, Aldous K M, Yamashita N. Environ. Sci. Technol., 2006, 40: 4400.
[41] Benbow A W, Cullis C F. Eur. Polym. J., 1975, 11: 723.
[42] Wang M S, Chen S J, Lai Y C, Huang K L, Chang-Chien G P. Aerosol and Air Quality Research, 2010, 10: 391.
[43] Du B, Zheng M H, Huang Y R, Liu A M, Tian H H, Li L L, Li N, Ba T, Li Y W, Dong S P, Liu W B, Su G J. Environ. Sci. Technol., 2010, 44: 5818.
[44] Du B, Zheng M H, Tian H H, Liu A M, Huang Y R, Li L L, Ba T, Li N, Ren Y, Li Y W, Dong S P, Su G J. Chemosphere, 2010, 80: 1227.
[45] Schuler D, Jager J. Chemosphere, 2004, 54: 49.
[46] Weber R, Kuch B. Environ. Int., 2003, 29: 699.
[47] Wichmann H, Dettmer F T, Bahadir M. Chemosphere, 2002, 47: 349.
[48] Altarawneh M, Dlugogorski B Z. Environ. Sci. Technol., 2013, 47: 5118.
[49] Heinbuch D, Stieglitz L. Chemosphere, 1993, 27: 317.
[50] Griffin R A, Chou S F J. Attenuation of Polybrominated Biphenyls and Hexachlorobenzene by Earth Materials, Environmental Geology Note 87, Illinois State Geological Survey Division, 1980.
[51] Willett L B, Brumm C J, Williams C L. J. Agric. Food. Chem., 1978, 26: 122.
[52] Hyotylainen T, Hartonen K. Trac-Trend Anal. Chem., 2002, 21: 13.
[53] Salgado-Petinal C, Llompart M, Garcia-Jares C, Garcia-Chao M, Cela R. J. Chromatogr. A, 2006, 1124: 139.
[54] Wan Y, Jones P D, Wiseman S, Chang H, Chorney D, Kannan K, Zhang K, Hu J Y, Khim J S, Tanabe S, Lam M H W, Giesy J P. Environ. Sci. Technol., 2010, 44: 6068.
[55] Zuloaga O, Navarro P, Bizkarguenaga E, Iparraguirre A, Vallejo A, Olivares M, Prieto A. Anal. Chim. Acta, 2012, 736: 7.
[56] Shao M W, Wei C, Jia Y J, Dai X H, Fang X A. Anal. Chem., 2010, 82: 5154.
[57] Rodil R, Carro A M, Lorenzo R A, Torrijos R C. Anal. Chem., 2005, 77: 2259.
[58] Malavia J, Santos F J, Galceran M T. Talanta, 2011, 84: 1155.
[59] Needham L L, Burse V W, Price H A. J. Assoc. Off. Ana. Chem., 1981, 64: 1131.
[60] Pijnenburg A M C M, Everts J W, Boer J, Boon J P. Ware G, Gunther F (Ed). Reviews of Environmental Contamination and Toxicology, Vol. 141, Springer New York, 1995. 1.
[61] Wester P G, DeBoer J, Brinkman U A T. Environ. Sci. Technol., 1996, 30: 473.
[62] Sjodin A, Patterson D G, Bergman A. Environ. Sci. Technol., 2001, 35: 3830.
[63] Covaci A, Voorspoels S, de Boer J. Environ. Int., 2003, 29: 735.
[64] Vetter W, Rosenfelder N. Anal Bioanal Chem, 2008, 392: 489.
[65] Polo M, Gomez-Noya G, Quintana J B, Llompart M, Garcia-Jares C, Cela R. Anal. Chem., 2004, 76: 1054.
[66] Kucklick J R, Helm P A. Anal. Bioanal. Chem., 2006, 386: 819.
[67] Liu G R, Zheng M H, Cai Z W, Wu Y N, Jiang G B. Trac-Trend Anal. Chem., 2013, 46: 178.
[68] Liu G, Cai Z, Zheng M. Chemosphere, 2014, 94: 1.
[69] Pena-Abaurrea M, Covaci A, Ramos L. J. Chromatogr. A, 2011, 1218: 6995.
[70] Abalos M, Abad E, van Leeuwen S P J, Lindstrom G, Fiedler H, de Boer J, van Bavel B. Trac-Trend Anal. Chem., 2013, 46: 98.
[71] Van Leeuwen S P J, Van Bavel B, De Boer J. Trac-Trend Anal. Chem., 2013, 46: 110.
[72] Burse V W, Needham L L, Liddle J A, Bayse D D, Price H A. J. Anal. Toxicol., 1980, 4: 22.
[73] Tian M, Chen S J, Wang J, Zheng X B, Luo X J, Mai B X. Environ. Sci. Technol., 2011, 45: 8819.
[74] Wang M S, Chen S J, Huang K L, Lai Y C, Chang-Chien G P, Tsai J H, Lin W Y, Chang K C, Lee J T. Chemosphere, 2010, 80: 1220.
[75] Salgado-Petinal C, Garcia-Chao M, Llompart M, Garcia-Jares C, Cela R. Anal. Bioanal. Chem., 2006, 385: 637.
[76] Yun S H, Addink R, McCabe J M, Ostaszewski A, Mackenzie-Taylor D, Taylor A B, Kannan K. Archives of Environmental Contamination and Toxicology, 2008, 55: 1.
[77] Prieto A, Zuloaga O, Usobiaga A, Etxebarria N, Fernandez L A. Anal. Bioanal. Chem., 2008, 390: 739.
[78] Sapozhnikova Y, Lehotay S J. Anal. Chim. Acta, 2013, 758: 80.
[79] Gieron J, Grochowalski A, Chrzaszcz R. Chemosphere, 2010, 78: 1272.
[80] Sjodin A, Jones R S, Lapeza C R, Focant J F, McGahee E E, Patterson D G. Anal. Chem., 2004, 76: 1921.
[81] Kefeni K K, Okonkwo J O, Chemosphere, 2012, 87: 1070.
[82] 吴惠勤(Wu H Q), 黄晓兰(Huang X L), 黄芳(Huang F), 林晓珊(Lin X S). 分析化学(Chinese J. Anal. Chem.) 2007, 35: 325.
[83] Sjödin A, Patterson D G, Bergman Å, Environ. Sci. Technol., 2001, 35: 3830.
[84] Zhu L Y, Hites R A, Environ. Sci. Technol., 2004, 38: 2779.
[85] Luo X J, Zhang X I, Liu J, Wu J P, Luo Y, Chen S J, Mai B X, Yang Z Y. Environ. Sci. Technol., 2008, 43: 306.
[86] Zhao G F, Wang Z J, Zhou H D, Zhao Q. Sci. Total Environ., 2009, 407: 4831.
[87] Sjödin A, Carlsson H, Thuresson K, Sjolin S, Bergman A, Ostman C. Environ. Sci. Technol., 2001, 35: 448.
[88] Vorkamp K, Thomsen M, Falk K, Leslie H, Møller S, Sørensen P B. Environ. Sci. Technol., 2005, 39: 8199.
[89] McKinney M A, Letcher R J, Aars J, Born E W, Branigan M, Dietz R, Evans T J, Gabrielsen G W, Peacock E, Sonne C. Environ. Int., 2011, 37: 365.
[90] McKinney M A, Stirling I, Lunn N J, Peacock E, Letcher R J. Sci. Total Environ., 2010, 408: 6210.
[91] Fernandez M F, Araque P, Kiviranta H, Molina-Molina J M, Rantakokko P, Laine O, Vartiainen T, Olea N. Chemosphere, 2007, 66: 377.
[92] D'Havé H, Covaci A, Scheirs J, Schepens P, Verhagen R, de Coen W. Environ. Sci. Technol., 2005, 39: 6016.
[93] Law R J, Allchin C R, De Boer J, Covaci A, Herzke D, Lepom P, Morris S, Tronczynski J, De Wit C A. Chemosphere, 2006, 64: 187.
[94] Lindberg P, Sellström U, Hggberg L, De Wit C A. Environ. Sci. Technol., 2004, 38: 93.
[95] Clarke B, Porter N, Symons R, Marriott P, Ades P, Stevenson G, Blackbeard J. Chemosphere, 2008, 73: 980.
[96] Chen S J, Ma Y J, Wang J, Chen D, Luo X J, Mai B X. Environ. Sci. Technol., 2009, 43: 4200.
[97] Rayne S, Ikonomou M G, Ross P S, Ellis G M, Barrett-Lennard L G. Environ. Sci. Technol., 2004, 38: 4293.
[98] McKinney M A, Cesh L S, Elliott J E, Williams T D, Garcelon D K, Letcher R J. Environ. Sci. Technol., 2006, 40: 6275.
[99] Sjodin A, Jones R S, Focant J F, Lapeza C, Wang R Y, McGahee E E, Zhang Y L, Turner W E, Slazyk B, Needham L L, Patterson D G. Environ. Health Perspect., 2004, 112: 654.
[100] Sjodin A, Wong L Y, Jones R S, Park A, Zhang Y, Hodge C, Dipietro E, McClure C, Turner W, Needham L L, Patterson D G. Environ. Sci. Technol., 2008, 42: 1377.
[101] Filonow A B, Jacobs L W, Mortland M M. J. Agric. Food. Chem., 1976, 24: 1201.
[102] Jacobs L W, Chou S F, Tiedje J M. J. Agric. Food. Chem., 1976, 24: 1198.
[103] Hesse J L, Powers R A. Environ. Health Perspect., 1978, 23: 19.
[104] Landrigan P J, Wilcox K R, Silva J, Humphrey H E, Kauffman C, Heath C W. Ann. N. Y. Acad. Sci., 1979, 320: 284.
[105] Eyster J T, Humphrey H E B, Kimbrough R D. Arch. Environ. Health, 1983, 38: 47.
[106] Tian M, Chen S J, Wang J, Luo Y, Luo X J, Mai B X. Environ. Sci. Technol., 2012, 46: 2708.

[1] 周丽, Abdelkrim Yasmine, 姜志国, 于中振, 曲晋. 微塑料:生物效应、分析和降解方法综述[J]. 化学进展, 2022, 34(9): 1935-1946.
[2] 韩文亮, 董林洋. 基于硫酸根自由基的先进氧化活化方法及其在有机污染物降解上的应用[J]. 化学进展, 2021, 33(8): 1426-1439.
[3] 宋志花, 李盛红, 杨刚强, 周娜, 陈令新. 人参皂苷类化合物样品前处理及分析检测[J]. 化学进展, 2020, 32(2/3): 239-248.
[4] 吴洋, 王玉, 仇荣亮, 杨欣. 应用零价铁基材料还原和催化氧化降解多溴联苯醚[J]. 化学进展, 2018, 30(4): 420-428.
[5] 王亚韡, 王莹, 江桂斌. 短链氯化石蜡的分析方法、污染现状与毒性效应[J]. 化学进展, 2017, 29(9): 919-929.
[6] 赵玉坤, 汪园园, 籍宏伟, 马万红, 陈春城*, 赵进才*. 多溴联苯醚的光催化还原脱溴[J]. 化学进展, 2017, 29(9): 911-918.
[7] 向垒, 孙腾飞, 莫测辉, 李彦文, 蔡全英, 李慧. 季铵盐类化合物环境问题研究进展[J]. 化学进展, 2016, 28(5): 727-736.
[8] 杨引, 樊梦醒, 郭智慧, 张卉, 吴萍, 蔡称心. DNA甲基化电化学分析[J]. 化学进展, 2014, 26(12): 1977-1986.
[9] 史亚利, 蔡亚岐. 全氟和多氟化合物环境问题研究[J]. 化学进展, 2014, 26(04): 665-681.
[10] 李卓娜, 周群芳, 刘稷燕, 史亚利, 蔡亚岐, 江桂斌. 多环麝香(PCMs)的环境行为及毒性效应[J]. 化学进展, 2012, 24(04): 606-615.
[11] 王晓伟 刘景富 阴永光. 有机磷酸酯阻燃剂污染现状与研究进展*[J]. 化学进展, 2010, 22(10): 1983-1992.
[12] 马玲玲 徐殿斗 陈扬 柴之芳. 短链氯化石蜡分析方法*[J]. 化学进展, 2010, 22(04): 720-726.
[13] 张帆,余应新,张东平,吴明红,盛国英,傅家谟. 溴系阻燃剂在环境及人体中的存在和代谢转化*[J]. 化学进展, 2009, 21(6): 1364-1372.
[14] 罗孝俊,麦碧娴,陈社军. PBDEs研究的最新进展*[J]. 化学进展, 2009, 21(0203): 359-368.
[15] 赵丹,孙春燕,陈春城,马万红,赵进才. 新型污染物多溴联苯醚和氰尿酸的光化学降解*[J]. 化学进展, 2009, 21(0203): 400-405.