English
新闻公告
More
化学进展 2017, Vol. 29 Issue (9): 930-942 DOI: 10.7536/PC170503 前一篇   后一篇

• 综述 •

卤代芳烃化学发光的结构效应、分子机制及其应用

朱本占1,2*, 谢琳娜1,2, 沈忱1,2, 高慧颖1,2, 朱丽雅1, 毛莉1,2*   

  1. 1. 中国科学院生态环境研究中心 环境化学与生态毒理学国家重点实验室 北京 100085;
    2. 中国科学院大学 北京 100049
  • 收稿日期:2017-05-03 修回日期:2017-08-22 出版日期:2017-09-15 发布日期:2017-09-05
  • 通讯作者: 朱本占,e-mail:bzhu@rcees.ac.cn;毛莉,e-mail:limao@rcees.ac.cn E-mail:bzhu@rcees.ac.cn;limao@rcees.ac.cn
  • 基金资助:
    中国科学院战略性先导科技专项(B类)(No.XDB01020300)和国家自然科学基金项目(No.21321004,21477139,21577149)资助

Chemiluminescence Generation from Haloaromatic Pollutants:Structure-Activity Relationship, Molecular Mechanism and Potential Applications

Benzhan Zhu1,2*, Linna Xie1,2, Chen Shen1,2, Huiying Gao1,2, Liya Zhu1, Li Mao1,2*   

  1. 1. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2017-05-03 Revised:2017-08-22 Online:2017-09-15 Published:2017-09-05
  • Supported by:
    The work was supported by the Strategic Priority Research Program of CAS (B) (No. XDB01020300) and the National Natural Science Foundation of China (No.21321004, 21477139, 21577149).
卤代芳烃是一类在环境中广泛存在的化合物,因其可能导致人体及生态系统的潜在环境风险而被公众日益关注。最近,高级氧化过程作为一种“环境绿色友好”的技术被用于处理和降解这类难降解持久性有机污染物。我们先前意外发现,卤代醌的典型代表物四氯苯醌与过氧化氢反应不仅会生成·OH,还会产生专一依赖于·OH的两次化学发光。进一步研究发现,对产生·OH的高级氧化体系而言,不仅四氯苯醌的前体五氯酚和其他卤代酚能产生化学发光,其余所有经测试的卤代芳烃也能产生化学发光。在此基础上,对19种氯酚同系物产生化学发光的结构-效应关系进行了系统研究,结果发现:氯原子取代数目越多化学发光越强。有趣的是,氯酚的化学发光还与生成的氯代醌中间体以及半醌自由基呈良好相关性。基于上述结果,我们认为反应生成了某种醌中间体以及激发态多羰基产物,正是它们导致了化学发光。进而开发出一种快速灵敏的化学发光分析手段,不仅可检测和定量痕量的卤代芳烃,还可为预测其毒性以及实时监测降解动力学提供有用信息。
The ubiquitous distribution of halogenated aromatic pollutants (XAr)coupled with their carcinogenicity has raised public concerns on their potential risks to both human health and the ecosystem. Recently, advanced oxidation processes (AOPs) have been employed as an "environmental-green" technology for treatment and degradation of such recalcitrant and highly toxic XAr. During our study on the molecular mechanism of metal-independent hydroxyl radicals (·OH) production by halogenated quinones and H2O2, we unexpectedly find that an unprecedented·OH-dependent two-step intrinsic chemiluminescene (CL) can be produced by H2O2 and tetrachloro-p-benzoquinone, which is the major carcinogenic metabolite of the widely-used wood preservative pentachlorophenol. We further find that·OH-producing AOPs-mediated degradation of pentachlorophenol and all other XAr could produce intrinsic CL that is directly dependent on the formation of the extremely reactive·OH.A systematic structure-activity relationship study for all 19 chlorinated phenols demonstrates that the CL increases with an increasing number of chlorine-substitution in general. More interestingly, a relatively good correlation is noticed that not only between CL intensity and chlorinated quinoid intermediates, but also between CL emission and semiquinone radicals. Taken together, we propose that·OH-dependent formation of quinoid intermediates, quinone-1,2-dioxetane and electronically excited carbonyl species is responsible for this unusual intrinsic CL production.A rapid, sensitive, simple, and effective CL method has been developed to not only detect and measure trace amount of XAr in real environment, but also to provide useful information for predicting the toxicity or monitoring the degradation kinetics of XAr. These findings may have broad chemical, environmental and biological implications for future studies on remediation of other halogenated persistent organic pollutants by AOPs.
Contents
1 Introduction
2 An·OH-dependent CL could be generated by carcinogenic polyhalogenated quinones and H2O2
2.1 The CL system of tetrachloro-1,4-benzoquinone (TCBQ) and H2O2
2.2 Possible light-emitting intermediates
2.3 Molecular mechanism for·OH-dependent CL generation
2.4 Other halogenated quinones could generate similar·OH-dependent CL
3 Intrinsic·OH-dependent CL could also be produced from degradation of pentachlorophenol (PCP) during advanced oxidation processes
3.1 An intrinsic CL emission from advanced oxidation of PCP by the classic Fenton system
3.2 The primary intermediates and ring-opening product
3.3 Possible molecular mechanism for CL emission during·OH-dependent PCP degradation
4 The structure-activity relationship study on the CL emission from the degradation of chlorinated phenols
4.1 Chlorinated phenols could generate CL during the·OH-generating AOPs
4.2 A good correlation between CL emission and the formation of chlorinated quinoid intermediates
4.3 Possible molecular basis for the correlation between CL emission and chlorinated phenols
4.4 A good correlation between CL emission and the formation of the chlorinated semiquinone radicals
4.5 Relatively good correlations between CL and the toxicity/degradation rate of chlorinated phenols
5 Other halogenated aromatic compounds could generate intrinsic CL during their advanced degradation by·OH-generating systems
6 Conclusion

中图分类号: 

()
[1] Zhu B Z, Shan G Q. Chem. Res. Toxicol., 2009, 22:969.
[2] 朱本占(Zhu B Z). 科学通报(Chin. Sci. Bull.), 2009, 54:1673.
[3] Zhu B Z, Zhu J G, Fan R M, Mao L. Adv. Mol. Toxicol., 2011, 5:1.
[4] Dann A B, Hontela A. J. Appl. Toxicol., 2010, 31:285.
[5] De Wit C A. Chemosphere, 2002, 46:583.
[6] Ramamoorthy S. Chlorinated Organic Compounds in the Environment:Regulatory and Monitoring Assessment. Boca Raton, FL:CRC Press, 1997.
[7] Fang X W, Schuchmann H P, von Sonntag C J. Chem. Soc. Perkin Trans., 2000, 2:1391.
[8] Zimbron J A, Reardon K F. Water Research, 2009, 43:1831.
[9] Lan Q, Li F, Liu C, Li X Z. Environ. Sci. Technol., 2008, 42:7918.
[10] Gupta S S, Stadler M, Noser C A, Ghosh A, Steinhoff B, Lenoir D, Horwitz C P, Schramm K W, Collins T J. Science, 2002, 296:326.
[11] Sorokin A, Seris J L, Meunier B. Science, 1995, 268:1163.
[12] Zhang H, Huang C H. Environ. Sci. Technol., 2003, 37:2421.
[13] Zhong Y H, Liang X, Zhong Y, Zhu J, Zhu S, Yuan P, He H, Zhang J. Water Res., 2012, 46:4633.
[14] Peller J, Wiest O, Kamat P V. Chem. -Eur. J., 2003, 9:5379.
[15] IARC Working Group.IARC Monogr Eval Carcinog Risk Chem Hum., 2016, 17:1637.
[16] Von Sonntag C. Water Sci. Technol., 2008, 58:1015.
[17] Wang J N, Xu L J. Crit. Rev. Environ. Sci. Technol., 2012, 42:251.
[18] Pera-Titus M, García-MolinaV, Baños M A, Giménez J, Esplugas S. Appl. Catalysis B:Environ., 2004, 47:219.
[19] Liou R, Che S, Hung M, Hsu C. Chemosphere, 2004, 55:1271.
[20] Liao C, Chung T, Che W, Kuo S. J. Mol. Catal. A:Chem., 2007, 265:189.
[21] Lente G, Espenson J H. Chem. Commun., 2003, 39:1163.
[22] Chu W. Environ. Sci. Technol., 1999, 33:421.
[23] Hong P K A, Zeng Y. Water Res., 2002, 36:4243.
[24] Schuster G B. Acc. Chem. Res., 1979, 12:366.
[25] Matsumoto M. J. Photochem. Photobiol. C, 2004, 5:27.
[26] Almeida de Oliveira M, Bartoloni F H, Augusto F A, Ciscato L F, Bastos E L, Baader W J. J. Org. Chem., 2012, 77:10537.
[27] Widder E A. Science, 2010, 328:704.
[28] Adam W, Kazakov D V, Kazakov V P. Chem. Rev., 2005, 105:3371.
[29] Grayeski M L. Anal.Chem., 1987, 59:1243A.
[30] McCapra F. Methods Enzymol., 2000, 305:3.
[31] Wang D, Zhao L, Guo L H, Zhang H. Anal. Chem., 2014, 86:10535.
[32] Cannizzaro V, Bowie A R, Sax A, Achterberg E P. Analyst, 2000, 125:51.
[33] Lin J M, Yamada M. Anal. Chem., 2000, 72:1148.
[34] Halliwell B, Gutteridge J M C. Free Radicals in Biology and Medicine. Oxford:Oxford University Press, 2007.
[35] Wagner J R, Cadet J. Acc. Chem. Res., 2010, 43:564.
[36] Xu G, Chance M R. Chem. Rev., 2007, 107:3514.
[37] Voinov M A, Pagan J O S, Morrison E, Smirnova T I, Smirnov A I. J. Am. Chem. Soc., 2011, 133:35.
[38] Montzka S A, Krol M, Dlugokencky E, Hall B, Jöckel P, Lelieveld J. Science, 2011, 331:67.
[39] Rohrer F, Berresheim H. Nature, 2006, 442:184.
[40] Meunier B. Science, 2002, 296:270.
[41] Zhu B Z, Kitrossky N, Chevion M. Biochem. Biophys. Res. Commun., 2000, 270:942.
[42] Zhu B Z, Zhao H T, Kalyanaraman B, Frei B. Free Radic. Biol. Med., 2002, 32:465.
[43] Zhu B Z, Zhao H T, Kalyanaraman B, Liu J, Shan G Q, Du Y G, Frei B. Proc. Natl. Acad. Sci. U.S.A., 2007, 104:3698.
[44] Zhu B Z, Kalyanaraman B, Jiang G B. Proc. Natl. Acad. Sci.U.S.A., 2007, 104:17575.
[45] Zhu B Z, Shan G Q, Huang C H, Kalyanaraman B, Mao L, Du Y G. Proc. Natl. Acad. Sci. U.S.A., 2009, 106:11466.
[46] Jia S, Zhu B Z, Guo L H. Anal. Bioanal. Chem., 2010, 397:2395.
[47] Zhu B Z, Fan R M, Qu N. Mini-Rev. Org. Chem., 2011, 8:434.
[48] Yin R, Zhang D, Song Y, Zhu B Z, Wang H. Sci. Rep., 2013, 3:1269.
[49] Huang C H, Shan G Q, Mao L, Kalyanaraman B, Zhu B Z. Chem. Commun., 2013, 49:6436.
[50] Shao J, Huang C H, Kalyanaraman B, Zhu B Z. Free Radic. Biol. Med., 2013, 60:177.
[51] Qin H, Huang C H, Shan G Q, Mao L, Kalyanaraman B, Zhu B Z. Free Radic. Biol. Med., 2013, 63:459.
[52] Zhao B, Yang Y, Wang X, Chong Z, Yin R, Song S H, Zhao C, Li C, Huang H, Sun B F, Wu D, Jin K X, Song M, Zhu B Z, Jiang G, Rendtlew Danielsen J M, Xu G L, Yang Y G, Wang H. Nucleic Acids Res., 2014, 42:1593.
[53] Huang C H, Ren F R, Shan G Q, Qin H, Mao L, Zhu B Z. Chem. Res. Toxicol., 2015, 28:831.
[54] Kanakubo A, Isobe M. Bioorg. Med. Chem., 2005, 13:2741.
[55] Kanakubo A, Koga K, Isobe M, Yoza K. Luminescence, 2005, 20:397.
[56] Zhu B Z, Mao L, Huang C H, Qin H, Fan R M, Kalyanaraman B, Zhu J G. Proc. Natl. Acad. Sci. U.S.A., 2012, 109:16046.
[57] 朱本占(Zhu B Z), 任福荣(Ren F R), 毛莉(Mao L), 高慧颖(Gao H Y), 刘庆林(Liu Q L), 刘蒲(Liu P). 科学通报(Chin. Sci. Bull.), 2015, 60:1855.
[58] Bos R, Tonkin S A, Hanson G R, Hindson C M, Lim K F, Barnett N W. J. Am. Chem. Soc., 2009, 131:2770.
[59] Mao L, Liu Y X, Huang C H, Gao H Y, Kalyanaraman B, Zhu B Z. Environ. Sci. Technol., 2015, 49:7940.
[60] 朱本占(Zhu B Z), 邵波(Shao B), 毛莉(Mao L), 高慧颖(Gao H Y). 化学学报(Acta. Chimica. Sinica), 2016,74:557.
[61] Wardman P, Candeias L P. Radiat. Res., 1996, 145:523.
[62] Goldstein S, Meyerstein D, Czapski G. Free Radic. Biol. Med., 1993, 15:435.
[63] Weavers L K, Malmstadt N, Hoffmann M R. Environ. Sci. Technol., 2000, 34:1280.
[64] Fukushima M, Tatsumi K. Environ. Sci. Technol., 2001, 35:1771.
[65] Gao H Y, Mao L, Shao B, Huang C H, Zhu B Z. Sci. Rep., 2016, 6:33159.
[66] Gao H Y, Mao L, Li F, Xie L N, Huang C H, Shao J, Shao B, Kalyanaraman B, Zhu B Z. Environ. Sci. Technol., 2017, 51:2934.
[67] Carey F A. Organic Chemistry. 4th ed. USA:McGraw-Hill Higher Education, 2000. 463.
[68] Lee J E, Choi W Y, Mhin B J, Balasubramanian K. J. Phys. Chem. A, 2004, 108:607.
[69] Akai N, Kudoh S, Takayanagi M, Nakata M. J. Photochem. Photobiol. A, 2001, 146:49.
[70] Tang W Z, Huang C P. Waste Manage., 1995, 15:615.
[71] Kishino T, Kobayashi K. Water Res., 1994, 28:1547.
[72] Bolton J L, Trush M A, Penning T M, Dryhurst G, Monks T J. Chem. Res. Toxicol., 2000, 13:135.
[73] Han S K, Ichikawa K, Utsumi H. Water Res., 1988, 32:1978.
[74] Smith S, Furay V J, Layiwola P J, Menezes-Filho J A. Chemosphere, 1994, 28:825.
[75] Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj P K. Chem. Res. Toxicol., 2006, 19:356.
[76] Kishino T, Kobayashi K. Water Res., 1996, 30:387.
[77] Chen C Y, Lin J H. Chemosphere, 2006, 62:503.
[78] Antonaraki S, Androulaki E, Dimotikali D, Hiskia A, Papaconstantinou E. J. Photochem. Photobiol. A, 2002, 148:191.
[79] Parra S, Olivero J, Pacheco L, Pulgarin C. Appl. Catal. B, 2003, 43:293.
[80] Oturan N, Panizza M, Oturan M A. J. Phys. Chem. A, 2009, 113:10988.
[81] Zhao Y L, Qin F, Boyd J M, Anichina J, Li X F. Anal. Chem., 2010, 82:4599.
[82] Song Y, Wagner B A, Witmer J R, Lehmler H J, Buettner G R. Proc. Natl. Acad. Sci. U.S.A., 2009, 106:9725.
[83] Chignell C F, Han S K, Mouithys-Mickalad A, Sik R H, Stadler K, Kadiiska M B. Toxicol. Appl. Pharmacol., 2008, 230:17.
[84] Teuten E L, Xu L, Reddy C M. Science, 2005, 307:917.
[85] Kelly B C, Ikonomou M G, Blair J D, Morin A E, Gobas F A P C. Science, 2007, 317:236.
[86] Sun Y, Pignatello J J. Environ. Sci. Technol., 1993, 27:304.
[1] 傅安辰, 毛彦佳, 王宏博, 曹志娟. 基于二氧杂环丁烷骨架的化学发光探针发展和应用研究[J]. 化学进展, 2023, 35(2): 189-205.
[2] 高文艳, 赵玄, 周曦琳, 宋雅然, 张庆瑞. 提高非均相芬顿催化活性策略、研究进展及启示[J]. 化学进展, 2022, 34(5): 1191-1202.
[3] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
[4] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[5] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[6] 刘佳, 史俊, 付坤, 丁超, 龚思成, 邓慧萍. 多相催化过硫酸盐工艺处理水环境中有机污染物的非自由基过程[J]. 化学进展, 2021, 33(8): 1311-1322.
[7] 衣晓虹, 王崇臣. 铁基金属-有机骨架及其复合物高级氧化降解水中新兴有机污染物[J]. 化学进展, 2021, 33(3): 471-489.
[8] 丁静静, 黄利利, 谢海燕. 基于纳米颗粒的化学发光技术在炎症及肿瘤诊疗中的应用[J]. 化学进展, 2020, 32(9): 1252-1263.
[9] 杨世迎, 薛艺超, 王满倩. 络合态重金属废水处理:基于高级氧化技术的解络合机制[J]. 化学进展, 2019, 31(8): 1187-1198.
[10] 宋河远, 康美荣, 靳荣华, 金福祥, 陈静. 离子液体在羰基化反应中的应用[J]. 化学进展, 2016, 28(9): 1313-1327.
[11] 杨钰昆, 王小敏, 方国臻, 云雅光, 郭婷, 王硕. 基于分子印迹技术的电化学发光分析[J]. 化学进展, 2016, 28(9): 1351-1362.
[12] 刘莹, 何宏平, 吴德礼, 张亚雷. 非均相催化臭氧氧化反应机制[J]. 化学进展, 2016, 28(7): 1112-1120.
[13] 林恒, 张晖. 电-Fenton及类电-Fenton技术处理水中有机污染物[J]. 化学进展, 2015, 27(8): 1123-1132.
[14] 张峰振, 吴超飞, 胡芸, 韦朝海. 卤代有机污染物的光化学降解[J]. 化学进展, 2014, 26(06): 1079-1098.
[15] 王彦斌, 赵红颖, 赵国华, 王宇晶, 杨修春. 基于铁化合物的异相Fenton催化氧化技术[J]. 化学进展, 2013, 25(08): 1246-1259.