English
新闻公告
More
化学进展 2021, Vol. 33 Issue (10): 1766-1779 DOI: 10.7536/PC200853 前一篇   后一篇

• 综述 •

大气颗粒物中有害成分的吸入生物可给性研究

钟来进, 唐直婕, 胡忻*(), 练鸿振*()   

  1. 南京大学化学化工学院 生命分析化学国家重点实验室 南京大学现代分析中心 南京 210023
  • 收稿日期:2020-08-24 修回日期:2020-12-04 出版日期:2021-10-20 发布日期:2020-12-28
  • 通讯作者: 胡忻, 练鸿振
  • 基金资助:
    国家自然科学基金项目(91543129); 国家自然科学基金项目(91643105); 国家自然科学基金项目(21874065); 江苏省自然科学基金项目(BK20181261); 江苏省自然科学基金项目(BK20171335)

Advances of In Vitro Inhalation Bioaccessibility for the Contaminants in Atmospheric Particulate Matters

Laijin Zhong, Zhijie Tang, Xin Hu(), Hongzhen Lian()   

  1. State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Centre of Materials Analysis, Nanjing University,Nanjing 210023, China
  • Received:2020-08-24 Revised:2020-12-04 Online:2021-10-20 Published:2020-12-28
  • Contact: Xin Hu, Hongzhen Lian
  • Supported by:
    National Natural Science Foundation of China(91543129); National Natural Science Foundation of China(91643105); National Natural Science Foundation of China(21874065); Natural Science Foundation of Jiangsu Province(BK20181261); Natural Science Foundation of Jiangsu Province(BK20171335)

大气颗粒物(Atmospheric particulate matter, APM)中负载的有毒元素和有机污染物等有害成分通过吸入暴露进入人体内,会给人体健康带来潜在的危害。APM中能被人体吸收的有害成分的浓度,而不是有害成分总浓度,更能科学地反映APM中有害成分的危害。为了简便、快速地分析APM中有害成分的生物可给态浓度(Bioaccessible concentration),研究者相继提出多种吸入生物可给性方法(Inhalation bioaccessibility procedure, IBAcP)评估APM中有害成分的吸入生物可给性(Inhalation bioaccessibility, IBAc)。本文综述了APM吸入暴露中有毒元素和有机污染物等吸入生物可给性研究进展,探讨了目前IBAcP存在的问题,并展望了未来研究方向。

Exposure to toxic elements or organic contaminants associated with atmospheric particulate matters(APM) via inhalation may result in potential health risks to human. Up to day, various inhalation bioaccessibility procedures(IBAcP) have been advocated to investigate the bioaccessible concentrations of these contaminants in APM for the easy and fast risk-based assessment. In this review, the inhalation bioaccessibility of the toxic elements and organic contaminants in APM and the current IBAcP for the hazards assessment are reviewed and evaluated. In addition, the defects and challenges existed in current IBAcP are disclosed and the possible solutions are proposed.

Contents

1 Introduction

2 Main procedures for inhalation bioaccessibility

3 Inhalation bioaccessibility of inorganic and organic contaminants

3.1 Inhalation bioaccessibility of inorganic toxic elements

3.2 Inhalation bioaccessibility of organic contaminants

4 Validation of inhalation bioaccessibility procedures via in-vivo correlation

5 Challenge and prospective

()
图1 吸入肺泡中的APM中有害成分的生物可给性和生物有效性
Fig. 1 Bioaccessibility and bioavailability of contaminants of APM in alveoli
表1 常见IBAcP的组分及浓度(g·L-1)
Table 1 Components of IBAcP(g·L-1)
图2 IBAcP的基本实验程序
Fig. 2 Basic operational procedure for IBAcP
表2 近年来APM中重金属等有毒元素的吸入生物可给性研究
Table 2 Inhalation bioaccessibility of toxic elements in APM with various IBAcP
APM IBAcP Bioaccessibility ref
Sites/Sources Size (μm) Toxic elements Concentration in total Simulated biofluids Solid to liquid ratio (g·mL-1) Time Simulated movements (%)
NIST-SRM∶ NIES 8

(Vehicle-exhaust,
Japan)
nd Pb 219±9 mg·kg-1 J-GS 1∶20 000 24 h 40 cycle min-1 45.2±3.5 6
Zn 1040±50 mg·kg-1 1∶20 000 92.5±2.5
1∶30 78.9±2.6
Cd 1.1±0.1 mg·kg-1 1∶20 000 74.3±4.6
NIST-SRM∶ BCR 038
(fly ash,Britain)
nd Pb 262±11 mg·kg-1 1∶20 000 3.3±0.2
Zn 581±29 mg·kg-1 1∶20 000 21.2±3.3
Cd 5.0±0.3 mg·kg-1 1∶20 000 11.2±0.6
Outdoor/indoor, 2015
winter and 2016
spring, Nanjing,
Jiangsu(W/I, W/O,
S/I, S/O)
<3.3 Mn nd SLF nd 24 h Shaken, 200 rpm W/I: 5.7±1.2, W/O: 22.6±6.5, S/I: 19.0±5.1, S/O: 11.4±1.4 41
Pb W/I: 0.9±0.2, W/O: 0.8±0.3, S/I: 4.3±1.2, S/O: 2.1±1.0
Zn W/I: 1.4±0.5, W/O: 1.5±0.7, S/I: 4.5±0.6, S/O: 2.2±1.6
2015, Nanjing,
Jiangsu
TSP Pb 132±95 ng·m-3 ALF nd 24 h Shaken, 200 rpm 17.8±5.2 42
PM2.5 Pb 69.4±30.9 ng·m-3 SLF/ALF 48 h 45.1±15.8
PM2.5(quartz) Cu 72.5±40.1 ng·m-3 SLF/ALF 72 h 25.8±5.0/40.6±9.1
PM2.5 (PTFE) Co 0.50±0.28 ng·m-3 SLF/ALF 48 h 19.9±7.2/33.2±4.4
TSP(PTFE) Cu 150±12 ng·m-3 SLF/ALF 72 h 14.9±6.0/14.9±4.2
Co 9.82±1.94 ng·m-3 SLF 1.64±0.71/1.86±0.26
Ni 15.6±8.8 ng·m-3 11.3±5.0
Sr 43.0±20.3 ng·m-3 19.0±8.2
27.3±5.8
40.0±6.2
Frankford, German PM10 As 1.7(0.8~4.4) ng·m-3 ALF/GS 1∶1162 24 h Shaken, few times per day 89(85~93)/57(27~73) 51
PM2.5 As 1.0(0.4~1.8) ng·m-3 ALF/GS 81(75~85)/57(27~73)
PM1 As 0.6(0.3~1.5) ng·m-3 ALF/GS 82(77~86)/80(69~95)
The-Youth-Olympic (2014), Nanjing, Jiangsu PM2.5 Pb 530~1332 mg·kg-1 ALF/J-GS 1∶2400-1∶14000 24 h 10 min/4 h,
50 rpm
59~79/55~87
11~29/5.3~21
61
Before/after The-Youth-Olympic PM2.5 Pb 410~1046 mg·kg-1 ALF/J-GS
Port Piri(PP)
York-Peninsula (SH15)
Victoria (CMW), Australian
PM10 Pb As PP: 6968±498, SH15: 1267±21, CMW: 1302±85 mg·kg-1 GS 1∶5000 120 h Magnetic stirring (1.5) PP: 1.69±0.22, SH15: 0.88±0.07, CMW: 1.18±0.19 62
PP: 36.4±2.3, SH15: 2042±24, CMW: 18,494±834 mg·kg-1 up and down (45 rpm) PP: 1.75±0.05, SH15: 0.67±0.02, CMW: 0.39±0.08
Magnetic stirring (1.5) PP: 70.9±8.9, SH15: 27.6±1.1, CMW: 18.6±0.3
Up and down (45 rpm) PP: 25±1.4, SH15: 20.3±0.4, CMW: 9.28±0.24
江苏南京 PM2.5 Pb 3518±58 mg·kg-1 W-GS 1∶100 48 h Shaken, 200 rpm 19.1±0.3 63
SLF 1∶1000 76.1±0.9
SELF 1∶100 (8.30±0.80)×10-2
ALF (3.04±0.50)×10-2
(13.2±1.0)×10-2
表3 近年来文献中APM中有机污染物的吸入生物可给性研究
Table 3 Summaries of recent researches on the inhalation bioaccessibility of organic contaminants in APM
APM IBAcP Bioaccessibility Ref
Size (μm) Compounds Concentration in total Simulated biofluids Solid to liquid
ratio(g·
mL-1)
Time Simulated movements (%)
Capital (P)/ Energy (E)/ Forest (F)/ Agriculture (A)/ city of north of China PM2.5 12 PAH ΣPAH12: 136±88.6(P), 91.3±43.2(E), 28.2±6.89(F), 38.2±10.7(A) ng·m-3 ALF/GS nd nd nd ΣPAH12-GS: 6.19±4.55(P), 7.62±3.6(E), 29.4±13.5(F), 16.7±5.9(A);
ΣPAH12-ALF: 4.04±2.99(P), 5.42±2.64(E), 20.6±7.7(F), 12.0±5.5(A)
67
Nonheating/heating season,
2016, Ha'erbin,
Heilongjiang
PM2.5 9 PAH ΣPAH9: 289±164(H), 33.5±12.6(N);
ΣPAH9-BaPe q a ): 256±105(H), 41.7±10.4(N) ng·m-3
ALF/GS 1/4 quartz film: 25 mL 24 h Shaken ΣPAH9-BaPeq-GS: 6.8±2.7(H), 9.2±6(N);
ΣPAH9-BaPeq-ALF: 2.3±1.6(H), 5.5±1.9(N)
68
Biochar with PAH nd Phe, Pyr 10 μg·g-1 ALF/GS nd nd nd Phe-ALF: 0.35~1.31, Pyr-ALF: 0.34~1.09, Phe-GS: 0.47~1.49, Pyr-GS: 0.43~1.12 69
50 μg·g-1
100 μg·g-1 Phe-GS: 1.44~2.67, Pyr-GS: 0.55~1.10
Phe-GS: 1.10~1.72, Pyr-GS: 0.70~1.22
Nanjing, Jiangsu (2015.10.16-2016.04.07) PM2.5 19PAH ΣPAH19: 38.0(4.03~102) ng·m-3 SELF 1∶600~1∶4000 24 h 100 rpm 3.21(BcF)~44.2(Acl) 70
China PM2.5 12 OPFR,
16 PAH
OPFRs: 86.9(50.4~158), PAHs: 132(17.5~456) μg·g-1 ALF/J-GS 1∶1000 1~15 d 10 min·d-1,
50 r·min-1
1-day: PAHs: 2.5(0.03~24);
15-day: OPFRs: 1.2(EHDPP)~97(TPhP), PAHs: 6.5(0.7~24.5)
71
E-waste incinerates,
Foshan, Guangzhou
0.056~0.18 2PAH nd 200 ml ALF/X-GS+1 g Tenax (Bar) 1∶10 000 0.5~14 d 150 rpm ALF: 2.8(BghiP)~93(Flu);
X-GS: 3.1(DahA)~54.7(Flu)
60
1.8~5.6
ALF: 17.2(BghiP)~92.4(Flu);
X-GS: 20.9(DahA)~77.5(Flu)
Indoor dust, Norway <63 9PE 0.41(DMP)~401.9(DiNP) μg·g-1 ALF/GS 1∶100 96 h 60 rpm ALF: 2.0(DEHP)~89.5(DMP);
GS: 3.1(DEHP)~89.9(DMP)
55
Air-liquid-particle phase partitioning
residential area, France PM0.5 72SVOC Bioaccessibility (%): PEs: 62~100, PBDEs: 71~79, PCBs: 48~56, PAHs: 48~90 74
图3 小鼠滴注暴露模拟PM2.5的铅吸入生物有效性用于筛选和优化4种常用的吸入生物可给性方法(SLF, SELF, ALF and GS):(a) 小鼠模拟PM2.5吸入暴露的铅的体内体外相关性曲线(IVIVC);(b) 模拟PM2.5中铅在小鼠肺部的代谢动力学曲线;(c) 小鼠肾脏中铅含量与吸入铅的剂量响应曲线;(d) GS不同固液比(g·mL-1)提取模拟PM2.5中铅的生物可给性与吸入暴露相对生物有效性[63]
Fig. 3 IBAc of Pb in mice of instillation with PM2.5 was used to screen out and optimize four common IBAcP(SLF, SELF, ALF and GS).(a) In vivo-in vitro correlation of Pb-BAc with Pb-RBA.(b) The metabolic kinetics of Pb in lungs during 7-days exposure to simulated PM2.5.(c) The dose dependent of Pb in kidneys of mice in 2-days exposure.(d) The Pb-BAc from GS at different solid to liquid ratio of correlations with Pb-RBA in the simulated PM2.5[63]
[1]
Madsen A M, Matthiesen C B, Frederiksen M W, Frederiksen M, Frankel M, Spilak M, Gunnarsen L, Timm M. J. Environ. Monit., 2012, 14(12): 3230.

doi: 10.1039/c2em30699a     URL    
[2]
Mukhtar A, Limbeck A. E3S Web Conf., 2013, 1: 05001.
[3]
Seinfeld J H, Pankow J F. Annu. Rev. Phys. Chem., 2003, 54(1): 121.

doi: 10.1146/physchem.2003.54.issue-1     URL    
[4]
Particulate MatterPM 2013. United State Environmental Protection Agency(U.S. EPA), 2015.
[5]
Brown J S, Gordon T, Price O, Asgharian B. Part. Fibre Toxicol., 2013, 10(1): 1.

doi: 10.1186/1743-8977-10-1     URL    
[6]
Julien C, Esperanza P, Bruno M, Alleman L Y. J. Environ. Monit., 2011, 13(3): 621.

doi: 10.1039/c0em00439a     URL    
[7]
Midander K, Pan J, Odnevall Wallinder I, Leygraf C. J. Environ. Monit., 2007, 9(1): 74.

doi: 10.1039/B613919A     URL    
[8]
Geiser M, Kreyling W G. Part. Fibre Toxicol., 2010, 7(1): 1.

doi: 10.1186/1743-8977-7-1     URL    
[9]
Wallenborn J G, McGee J K, Schladweiler M C, Ledbetter A D, Kodavanti U P. Toxicol. Sci., 2007, 98(1): 231.

pmid: 17434951
[10]
Framework for metals risk assessment. United State Environmental Protection Agency (U.S. EPA), 2007.
[11]
Ansoborlo E, HengÉ-Napoli M H, Chazel V, Gibert R, Guilmette R A. Heal. Phys., 1999, 77(6): 638.

doi: 10.1097/00004032-199912000-00007     URL    
[12]
Oberdorster G. Regul. Toxicol. Pharmacol., 1995, 21(1): 123.

doi: 10.1006/rtph.1995.1017     URL    
[13]
Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H B, Yeh J I, Zink J I, Nel A E. ACS Nano, 2008, 2(10): 2121.

doi: 10.1021/nn800511k     URL    
[14]
Utembe W, Potgieter K, Stefaniak A B, Gulumian M. Part. Fibre Toxicol., 2015, 12(1): 1.
[15]
Costa D L, Dreher K L. Environ. Heal. Perspect., 1997, 105(suppl 5): 1053.
[16]
Landrigan P J, Baker E L. Environ. Res., 1981, 25(1): 204.

pmid: 7238464
[17]
Díaz-Barriga F, Batres L, CalderÓn J, Lugo A, Galvao L, Lara I, Rizo P, Arroyave M E, McConnell R. Environ. Res., 1997, 74(1): 11.

pmid: 9339209
[18]
Anthony J S, Zamel N, Aberman A. Can. Med. Assoc. J., 1978, 119(6):586.

pmid: 213181
[19]
NoguÉ S, Sanz-GallÉn P, Torras A, Boluda F. Occup. Med., 2004, 54(4):265.

doi: 10.1093/occmed/kqh052     URL    
[20]
Smith A H, Ercumen A, Yuan Y, Steinmaus C M. J. Expo. Sci. Environ. Epidemiol., 2009, 19(4): 343.

doi: 10.1038/jes.2008.73     URL    
[21]
Palus J, Rydzynski K, Dziubaltowska E, Wyszynska K, Natarajan A T, Nilsson R. Mutat. Res. Toxicol. Environ. Mutagen., 2003, 540(1): 19.

doi: 10.1016/S1383-5718(03)00167-0     URL    
[22]
Campen M J, Nolan J P, Schladweiler M C J, Kodavanti U P, Evansky P A, Costa D L, Watkinson W P. Toxicol. Sci., 2001, 64(2):243.

pmid: 11719707
[23]
Campen M J, Nolan J P, Schladweiler M C J, Kodavanti U P, Costa D L, Watkinson W P. J. Toxicol. Environ. Heal. A, 2002, 65(20): 1615.

doi: 10.1080/00984100290071694     URL    
[24]
Kodavanti U P, Schladweiler M C, Ledbetter A D, McGee J K, Walsh L, Gilmour P S, Highfill J W, Davies D, Pinkerton K E, Richards J H, Crissman K, Andrews D, Costa D L. Environ. Heal. Perspect., 2005, 113(11): 1561.

doi: 10.1289/ehp.7868     URL    
[25]
Lippmann M, Ito K, Hwang J S, Maciejczyk P, Chen L C. Environ. Heal. Perspect., 2006, 114(11): 1662.

doi: 10.1289/ehp.9150     URL    
[26]
Veras M M, Caldini E G, Dolhnikoff M, Saldiva P H N. J. Toxicol. Environ. Heal. B, 2010, 13(1): 1.

doi: 10.1080/10937401003673800     URL    
[27]
Iavicoli I, Fontana L, Bergamaschi A. J. Toxicol. Environ. Heal. B, 2009, 12(3): 206.
[28]
Kioumourtzoglou M A, Schwartz J D, Weisskopf M G, Melly S J, Wang Y, Dominici F, Zanobetti A. Environ. Heal. Perspect., 2016, 124(1): 23.

doi: 10.1289/ehp.1408973     URL    
[29]
Wang J D, Xing J, Mathur R, Pleim J E, Wang S X, Hogrefe C, Gan C M, Wong D C, Hao J M. Environ. Heal. Perspect., 2017, 125(3): 400.

doi: 10.1289/EHP298     URL    
[30]
Pardo M, Shafer M M, Rudich A, Schauer J J, Rudich Y. Environ. Sci. Technol., 2015, 49(14): 8777.

doi: 10.1021/acs.est.5b01449     URL    
[31]
Gavett S H, Haykal-Coates N, Copeland L B, Heinrich J, Gilmour M I. Environ. Heal. Perspect., 2003, 111(12): 1471.

doi: 10.1289/ehp.6300     URL    
[32]
Dye J A, Lehmann J R, McGee J K, Winsett D W, Ledbetter A D, Everitt J I, Ghio A J, Costa D L. Environ. Heal. Perspect., 2001, 109(suppl 3): 395.
[33]
Kodavanti U P, Schladweiler M C J, Richards J R, Costa D L. Inhal. Toxicol., 2001, 13(1): 37.

pmid: 11153059
[34]
Wang D B, Pakbin P, Shafer M M, Antkiewicz D, Schauer J J, Sioutas C. Atmos. Environ., 2013, 77: 301.

doi: 10.1016/j.atmosenv.2013.05.031     URL    
[35]
Duvall R M, Norris G A, Dailey L A, Burke J M, McGee J K, Gilmour M I, Gordon T, Devlin R B. Inhal. Toxicol., 2008, 20(7): 671.

doi: 10.1080/08958370801935117     URL    
[36]
Poncy J L, Metivier H, Dhilly M, Verry M, Masse R. Environ. Heal. Perspect., 1992, 97: 127.

doi: 10.1289/ehp.9297127     URL    
[37]
Ministry of Environmental Protection of the People's Republic of China. Air Quality Standard. GB 3095-2012.
(环境保护部, 空气质量标准GB 3095-2012.).
[38]
Denys S, Caboche J, Tack K, Rychen G, Wragg J, Cave M, Jondreville C, Feidt C. Environ. Sci. Technol., 2012, 46(11): 6252.

doi: 10.1021/es3006942     URL    
[39]
Boisa N, Elom N, Dean J R, Deary M E, Bird G, Entwistle J A. Environ. Int., 2014, 70: 132.
[40]
Zereini F, Wiseman C L S, Püttmann W. Environ. Sci. Technol., 2012, 46(18): 10326.

doi: 10.1021/es3020887     pmid: 22913340
[41]
Tang Z J, Hu X, Qiao J Q, Lian H Z. Atmosphere, 2018, 9(9): 340.

doi: 10.3390/atmos9090340     URL    
[42]
Tang Z J, Hu X, Chen Y J, Qiao J Q, Lian H Z. Atmos. Environ., 2019, 196: 118.

doi: 10.1016/j.atmosenv.2018.09.045     URL    
[43]
Guidelines for carcinogen risk assessment, Risk Assessment Forum, Washington, D.C. EPA/630/P-03/001F. United State Environmental Protection Agency(U.S. EPA), 2005.
[44]
Revised draft human health baseline risk 394 assessment for upland soils. Kirk Kessler, Principal. Environmental Planning Specialists(EPS), 2011.
[45]
Dos Santos M, GÓmez D, Dawidowski L, Gautier E, Smichowski P. Microchem. J., 2009, 91(1): 133.

doi: 10.1016/j.microc.2008.09.001     URL    
[46]
Schaider L A, Senn D B, Brabander D J, McCarthy K D, Shine J P. Environ. Sci. Technol., 2007, 41(11): 4164.

pmid: 17612206
[47]
Colombo C, Monhemius A J, Plant J A. Ecotoxicol. Environ. Saf., 2008, 71(3): 722.

doi: 10.1016/j.ecoenv.2007.11.011     URL    
[48]
Moss O R. Health Phys., 1979, 36(3):447.

pmid: 489300
[49]
Mukhtar A, Limbeck A. Anal. Chimica Acta, 2013, 774: 11.

doi: 10.1016/j.aca.2013.02.008     URL    
[50]
Gamble J. Harvard University Press, 1967. 1.
[51]
Wiseman C L S, Zereini F. Atmos. Environ., 2014, 89: 282.

doi: 10.1016/j.atmosenv.2014.02.055     URL    
[52]
Kastury F, Smith E, Juhasz A L. Sci. Total. Environ., 2017, 574: 1054.

doi: 10.1016/j.scitotenv.2016.09.056     URL    
[53]
Stopford W, Turner J, Cappellini D, Brock T. J. Environ. Monit., 2003, 5(4): 675.

doi: 10.1039/b302257a     URL    
[54]
ThÉlohan S, de Meringo A. Environ. Heal. Perspect., 1994, 102(Suppl 5): 91.
[55]
Kademoglou K, Giovanoulis G, Palm-Cousins A, Padilla-Sanchez J A, MagnÉr J, de Wit C A, Collins C D. Environ. Sci. Technol. Lett., 2018, 5(6): 329.

doi: 10.1021/acs.estlett.8b00113     URL    
[56]
Wragg J, Klinck B. J. Environ. Sci. Heal. A, 2007, 42(9): 1223.

doi: 10.1080/10934520701436054     URL    
[57]
Twining J, McGlinn P, Loi E, Smith K, GierÉ R. Environ. Sci. Technol., 2005, 39(19): 7749.

pmid: 16245854
[58]
Bailey M R, Ansoborlo E, Guilmette R A, Paquet F. Radiat. Prot. Dosim., 2007, 127(1/4): 31.

doi: 10.1093/rpd/ncm249     URL    
[59]
Berlinger B, Ellingsen D G, Náray M, Záray G, Thomassen Y. J. Environ. Monit., 2008, 10(12): 1448.

doi: 10.1039/b806631k     URL    
[60]
Xie S Y, Lao J Y, Wu C C, Bao L J, Zeng E Y. Environ. Int., 2018, 120: 295.

doi: 10.1016/j.envint.2018.08.015     URL    
[61]
Li S W, Li H B, Luo J, Li H M, Qian X, Liu M M, Bi J, Cui X Y, Ma L Q. Environ. Int., 2016, 94: 69.

doi: 10.1016/j.envint.2016.05.010     URL    
[62]
Kastury F, Smith E, Karna R R, Scheckel K G, Juhasz A L. Sci. Total. Environ., 2018, 631/632: 92.

doi: 10.1016/j.scitotenv.2018.02.337     URL    
[63]
Zhong L J, Liu X L, Hu X, Chen Y J, Wang H W, Lian H Z. J. Hazard. Mater., 2020, 381: 121202.

doi: 10.1016/j.jhazmat.2019.121202     URL    
[64]
da Silva L I D, Yokoyama L, Maia L B, Monteiro M I C, Pontes F V M, Carneiro M C, Neto A A. Microchem. J., 2015, 118: 266.

doi: 10.1016/j.microc.2014.08.004     URL    
[65]
Pelletier M, Bonvallot N, Ramalho O, Mandin C, Wei W J, Raffy G, Mercier F, Blanchard O, Le Bot B, Glorennec P. Environ. Int., 2017, 109: 81.

doi: S0160-4120(17)30902-9     pmid: 28950160
[66]
Fournier K, Glorennec P, Bonvallot N. Environ. Res., 2014, 130: 20.

doi: 10.1016/j.envres.2014.01.007     pmid: 24525241
[67]
Gao P, Hu J, Song J, Chen X, Ou C Y, Wang H, Sha C Y, Hang J, Xing B S. Environ. Pollut., 2019, 255: 113296.

doi: 10.1016/j.envpol.2019.113296     URL    
[68]
Gao P, Guo H Y, Wang S H, Guo L, Xing Y F, Yao C H, Jia L M, Fan Q, Hang J. Atmos. Environ., 2019, 201: 293.

doi: 10.1016/j.atmosenv.2018.12.054     URL    
[69]
Liu X L, Wang Y J, Shen Z L, Wu X, Shi Y, Wang F. MethodsX, 2019, 6: 558.
[70]
Li Y Z, Juhasz A L, Ma L Q, Cui X Y. Sci. Total. Environ., 2019, 650: 56.

doi: 10.1016/j.scitotenv.2018.08.246     URL    
[71]
Zeng Y, Fan Y, Yan X, Zheng J, Chen S J, Mai B X. Environ. Res., 2019, 170: 134.

doi: 10.1016/j.envres.2018.12.025     URL    
[72]
Fang M L, Stapleton H M. Environ. Sci. Technol., 2014, 48(22): 13323.

doi: 10.1021/es503918m     URL    
[73]
Wei W J, Bonvallot N, Gustafsson Å, Raffy G, Glorennec P, Krais A, Ramalho O, Le Bot B, Mandin C. Environ. Int., 2018, 113: 202.

doi: 10.1016/j.envint.2018.01.024     URL    
[74]
Wei W J, Ramalho O, Mandin C. Int. J. Hyg. Environ. Heal., 2020, 224: 113436.
[75]
Juhasz A L, Weber J, Naidu R, Gancarz D, Rofe A, Todor D, Smith E. Environ. Sci. Technol., 2010, 44(13): 5240.

doi: 10.1021/es1006516     URL    
[76]
Li J, Li K, Cave M, Li H B, Ma L Q. J. Hazard. Mater., 2015, 295: 55.

doi: 10.1016/j.jhazmat.2015.03.061     URL    
[77]
Li H B, Zhao D, Li J, Li S W, Wang N, Juhasz A L, Zhu Y G, Ma L Q. Environ. Sci. Technol., 2016, 50(10): 4989.

doi: 10.1021/acs.est.6b00480     URL    
[78]
Guidance for Evaluating the Oral Bioavailability of Metals in Soils for Use in Human Health Risk Assessment. United State Environmental Protection Agency(U.S. EPA), 2007.
[79]
Molina R M, Konduru N V, Jimenez R J, Pyrgiotakis G, Demokritou P, Wohlleben W, Brain J D. Environ. Sci.: Nano, 2014, 1(6): 561.

doi: 10.1021/es60007a001     URL    
[80]
Konduru N V, Murdaugh K M, Sotiriou G A, Donaghey T C, Demokritou P, Brain J D, Molina R M. Part. Fibre Toxicol., 2014, 11(1): 1.
[81]
Kastury F, Smith E, Lombi E, Donnelley M W, Cmielewski P L, Parsons D W, Noerpel M, Scheckel K G, Kingston A M, Myers G R, Paterson D, de Jonge M D, Juhasz A L. Environ. Sci. Technol., 2019, 53(19): 11486.

doi: 10.1021/acs.est.9b03249     URL    
[1] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[2] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[3] 王楠, 周宇齐, 姜子叶, 吕田钰, 林进, 宋洲, 朱丽华. 还原-氧化协同降解全/多卤代有机污染物[J]. 化学进展, 2022, 34(12): 2667-2685.
[4] 韩文亮, 董林洋. 基于硫酸根自由基的先进氧化活化方法及其在有机污染物降解上的应用[J]. 化学进展, 2021, 33(8): 1426-1439.
[5] 张静, 王定祥, 张宏龙. 高价锰、铁去除水中新兴有机污染物[J]. 化学进展, 2021, 33(7): 1201-1211.
[6] 衣晓虹, 王崇臣. 铁基金属-有机骨架及其复合物高级氧化降解水中新兴有机污染物[J]. 化学进展, 2021, 33(3): 471-489.
[7] 谷麟, 章凯, 俞海祥, 董光霞, 乔兴博, 闻海峰. 污泥碳基催化材料的合成及在水环境中的应用[J]. 化学进展, 2020, 32(9): 1412-1426.
[8] 王均凤, 王毅霖, 张晓飞, 王道广, 李亚辉, 何宏艳, 李兴春, 张锁江. 炼化反渗透浓水中有机物处理技术[J]. 化学进展, 2020, 32(10): 1462-1481.
[9] 刘玥, 吴忆涵, 庞宏伟, 王祥学, 于淑君, 王祥科. 石墨相氮化碳材料在水环境污染物去除中的研究[J]. 化学进展, 2019, 31(6): 831-846.
[10] 鲍恋君, 郭英, 刘良英, 曾永平*. 珠江三角洲典型有机污染物的环境行为及人群暴露风险[J]. 化学进展, 2017, 29(9): 943-961.
[11] 殷立, 徐剑桥*, 黄周兵, 陈国胜, 郑娟, 欧阳钢锋*. 基于新型材料的固相微萃取探针的制备与应用[J]. 化学进展, 2017, 29(9): 1127-1141.
[12] 林恒, 张晖. 电-Fenton及类电-Fenton技术处理水中有机污染物[J]. 化学进展, 2015, 27(8): 1123-1132.
[13] 刘国瑞, 李丽, 孙素芳, 姜晓旭, 王美, 郑明辉. 多溴联苯的污染来源、分析方法和环境污染特征[J]. 化学进展, 2014, 26(08): 1434-1444.
[14] 张峰振, 吴超飞, 胡芸, 韦朝海. 卤代有机污染物的光化学降解[J]. 化学进展, 2014, 26(06): 1079-1098.
[15] 龙安华, 雷洋, 张晖. 活化过硫酸盐原位化学氧化修复有机污染土壤和地下水[J]. 化学进展, 2014, 26(05): 898-908.