English
新闻公告
More
化学进展 2015, Vol. 27 Issue (6): 687-703 DOI: 10.7536/PC150164 前一篇   后一篇

• 超分子化学专辑 •

超分子组装体在催化领域中的应用

赵金, 刘育*   

  1. 南开大学化学系 元素有机化学国家重点实验室 天津化学化工协同创新中心 天津 300071
  • 收稿日期:2015-01-01 修回日期:2015-03-01 出版日期:2015-06-15 发布日期:2015-04-20
  • 通讯作者: 刘育 E-mail:yuliu@nankai.edu.cn
  • 基金资助:
    国家重点基础研究发展计划(973)项目(No.2011CB932502)和国家自然科学基金项目(No.91227107,21432004)资助

Catalytic Applications of Supramolecular Assemblies

Zhao Jin, Liu Yu*   

  1. State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemistry, Nankai University, Tianjin 300071, China
  • Received:2015-01-01 Revised:2015-03-01 Online:2015-06-15 Published:2015-04-20
  • Contact: 10.7536/PC150164 E-mail:yuliu@nankai.edu.cn
  • Supported by:
    The work was supported by the State Basic Research Program of China(973 Program) (No.2011CB932502) and the National Natural Science Foundation of China (No. 91227107, 21432004).
超分子组装体的各组分规整排列、高比表面积等微纳米结构特点使其在催化应用领域中显示出独特的催化性能,成为当前研究的一个热点。本文将超分子组装体按照空间维度分为四类,对不同维度的超分子组装体在催化领域中的应用研究进行了简要综述;依据不同维度下组装体的结构特点,分别探讨了其催化机制以及应用优势,并对其今后的发展方向作了进一步的展望。
The catalytic systems based on supramolecular assemblies have became a hot research topic. The assemblies exhibit unique catalytic properties due to their specific structural characteristics, such as regular arrangement of component, high specific surface area. In this review, the catalytic mechanism and advantages of the supramolecular assemblies in different dimensions are reviewed, and their future developments are also prospected.

Contents
1 Introduction
2 The catalytic applications of zero dimension assemblies
2.1 Micelle based catalytic systems
2.2 Vesicle based catalytic systems
2.3 Nanoparticle based catalytic systems
3 The catalytic applications of one dimension assemblies
3.1 Supramolecular polymer based catalytic systems
3.2 Nanofiber based catalytic systems
3.3 Nanotube based catalytic systems
4 The catalytic applications of two dimension assemblies
5 The catalytic applications of three dimension assemblies
5.1 Gel based catalytic systems
5.2 Framework based catalytic systems
6 Conclusion and outlook

中图分类号: 

()
[1] Vriezema D M, Aragones M C, Elemans J, Cornelissen J, Rowan A E, Nolte R J M. Chem. Rev., 2005, 105: 1445.
[2] Chen L, Li C J. Org. Lett., 2004, 6: 3151.
[3] Kobayashi S, Wakabayashi T, Nagayama S, Oyamada H. Tetrahedron Lett., 1997, 38: 4559.
[4] Kobayashi S, Wakabayashi T. Tetrahedron Lett., 1998, 39: 5389.
[5] Luo S, Mi X, Liu S, Xu H, Cheng J P. Chem. Commun., 2006: 3687.
[6] Luo S, Xu H, Li J, Zhang L, Mi X, Zheng X, Cheng J P. Tetrahedron, 2007, 63: 11307.
[7] Otto S, Engberts J B F N, Kwak J C T. J. Am. Chem. Soc., 1998, 120: 9517.
[8] Motoda D, Kinoshita H, Shinokubo H, Oshima K. Angew. Chem. Int. Ed., 2004, 43: 1860.
[9] Ryu J H, Jang C J, Yoo Y S, Lim S G, Lee M. J. Org. Chem., 2005, 70: 8956.
[10] Li J, Tang Y, Wang Q, Li X, Cun L, Zhang X, Zhu J, Li L, Deng J. J. Am. Chem. Soc., 2012, 134: 18522.
[11] Yin Y, Huang X, Lv C, Wang L, Yu S, Luo Q, Xu J, Liu J. Macromol. Biosci., 2010, 10: 1505.
[12] Xiao R, Zhou L, Dong Z, Gao Y, Liu J. Chin. J. Chem. 2014, 32: 37.
[13] Schenning A, Spelberg J H L, Hubert D H W, Feiters M C, Nolte R J M. Chem. Eur. J., 1998, 4: 871.
[14] Rispens T, Engberts J B F N. Org. Lett., 2001, 3: 941.
[15] Li H R, Wu L Z, Tung C H. Chem. Commun., 2000, 1085.
[16] Li H R, Wu L Z, Tung C H. J. Am. Chem. Soc., 2000, 122: 2446.
[17] Qin L, Zhang L, Jin Q, Zhang J, Han B, Liu M. Angew. Chem. Int. Ed., 2013, 52: 7761.
[18] Zhang B, Jiang Z, Zhou X, Lu S, Li J, Liu Y, Li C. Angew. Chem. Int. Ed., 2012, 51: 13159.
[19] Gao Q, Liu Y, Lu S M, Li J, Li C. Green Chem., 2011, 13: 1983.
[20] Li J, Hu S, Luo S, Cheng J P. Eur. J. Org. Chem., 2009, 2009: 132.
[21] Spulber M, Baumann P, Saxer S S, Pieles U, Meier W, Bruns N. Biomacromolecules, 2014, 15: 1469.
[22] Vriezema D M, Garcia P M L, Oltra N S, Hatzakis N S, Kuiper S M, Nolte R J M, Rowan A E, van Hest J C M. Angew. Chem. Int. Ed., 2007, 46: 7378.
[23] Berda E B, Foster E J, Meijer E W. Macromolecules, 2010, 43: 1430.
[24] Bonomi R, Cazzolaro A, Sansone A, Scrimin P, Prins L J. Angew. Chem. Int. Ed., 2011, 50: 2307.
[25] Terashima T, Mes T, De Greef T F A, Gillissen M A J, Besenius P, Palmans A R A, Meijer E W. J. Am. Chem. Soc., 2011, 133: 4742.
[26] Artar M, Terashima T, Sawamoto M, Meijer E W, Palmans A R A. J. Polym. Sci., Part A: Polym. Chem., 2014, 52: 12.
[27] Huerta E, Stals P J M, Meijer E W, Palmans A R A. Angew. Chem. Int. Ed., 2013, 52: 2906.
[28] Yun G, Hassan Z, Lee J, Kim J, Lee N S, Kim N H, Baek K, Hwang I, Park C G, Kim K. Angew. Chem. Int. Ed., 2014, 53: 6414.
[29] Lee L C, Zhao Y. J. Am. Chem. Soc., 2014, 136: 5579.
[30] Leger B, Menuel S, Ponchel A, Hapiot F, Monflier E. Adv. Synth. Catal., 2012, 354: 1269.
[31] Mhadgut S C, Palaniappan K, Thimmaiah M, Hackney S A, Torok B, Liu J. Chem. Commun., 2005, 3207.
[32] Zaupa G, Mora C, Bonomi R, Prins L J, Scrimin P. Chem. Eur. J., 2011, 17: 4879.
[33] Pieters G, Prins L J. New J. Chem., 2012, 36: 1931.
[34] Zaramella D, Scrimin P, Prins L J. J. Am. Chem. Soc., 2012, 134: 8396.
[35] Wang Z, Chen G, Ding K. Chem. Rev., 2009, 109: 322.
[36] Liang Y X, Jing Q, Li X, Shi L, Ding K L. J. Am. Chem. Soc., 2005, 127: 7694.
[37] Shi L, Wang X, Sandoval C A, Wang Z, Li H, Wu J, Yu L, Ding K. Chem. Eur. J., 2009, 15: 9855.
[38] 石磊(Shi L), 王正(Wang Z), 王兴旺(Wang X W), 李明星(Li M X), 丁奎岭(Ding K L). 有机化学(Chinese Journal of Organic Chemistry), 2006, 10: 1444.
[39] Shi L, Wang X, Sandoval C A, Li M, Qi Q, Li Z, Ding K. Angew. Chem. Int. Ed., 2006, 45: 4108.
[40] Yu L, Wang Z, Wu J, Tu S, Ding K. Angew. Chem. Int. Ed., 2010, 49: 3627.
[41] Park Y J, Park J W, Jun C H. Acc. Chem. Res., 2008, 41: 222.
[42] Kim D W, Lim S G, Jun C H. Org. Lett., 2006, 8: 2937.
[43] Park J W, Park J H, Jun C H. J. Org. Chem., 2008, 73: 5598.
[44] De Torres M, van Hameren R, Nolte R J M, Rowan A E, Elemans J A A W. Chem. Commun., 2013, 49: 10787.
[45] Fruehbeiβer S, Grohn F. J. Am. Chem. Soc., 2012, 134: 14267.
[46] Yin P, Bayaguud A, Cheng P, Haso F, Hu L, Wang J, Vezenov D, Winans R E, Hao J, Li T, Wei Y, Liu T. Chem. Eur. J., 2014, 20: 9589.
[47] Escuder B, Rodriguez-Llansola F, Miravet J F. New J. Chem., 2010, 34: 1044.
[48] Guler M O, Stupp S I. J. Am. Chem. Soc., 2007, 129: 12082.
[49] Khalily M A, Ustahuseyin O, Garifullin R, Genc R, Guler M O. Chem. Commun., 2012, 48: 11358.
[50] Tang Y, Zhou L, Li J, Luo Q, Huang X, Wu P, Wang Y, Xu J, Shen J, Liu J. Angew. Chem. Int. Ed., 2010, 49: 3920.
[51] Wang L, Zou H, Dong Z, Zhou L, Li J, Luo Q, Zhu J, Xu J, Liu J. Langmuir, 2014, 30: 4013.
[52] Li Z Q, Zhang Y M, Chen Y, Liu Y. Chem. Eur. J., 2014, 20: 8566.
[53] Jin Q, Zhang L, Cao H, Wang T, Zhu X, Jiang J, Liu M. Langmuir, 2011, 27: 13847.
[54] Huang Z, Guan S, Wang Y, Shi G, Cao L, Gao Y, Dong Z, Xu J, Luo Q, Liu J. J. Mater. Chem. B, 2013, 1: 2297.
[55] Komatsu T, Terada H, Kobayashi N. Chem. Eur. J., 2011, 17: 1849.
[56] De Oliveira R F, de Moraes M L, Oliveira O N, Ferreira M. J. Phys. Chem. C, 2011, 115: 19136.
[57] Liu Y, Yan Y L, Lei J, Wu F, Ju H. Electrochem. Commun., 2007, 9: 2564.
[58] Wang Q, Yang Z, Wang L, Ma M, Xu B. Chem. Commun., 2007, 1032.
[59] Wang Q, Yang Z, Gao Y, Ge W, Wang L, Xu B. Soft Matter, 2008, 4: 550.
[60] Wang Q, Yang Z, Zhang X, Xiao X, Chang C K, Xu B. Angew. Chem. Int. Ed., 2007, 46: 4285.
[61] Wang Q, Yang Z, Ma M, Chang C K, Xu B. Chem. Eur. J., 2008, 14: 5073.
[62] Miravet J F, Escuder B. Chem. Commun., 2005, 5796.
[63] Liu Y R, He L, Zhang J, Wang X, Su C Y. Chem. Mater., 2009, 21: 557.
[64] Rodriguez-Llansola F, Escuder B, Miravet J F. Org. Biomol. Chem., 2009, 7: 3091.
[65] Rodriguez-Llansola F, Miravet J F, Escuder B. Chem. Commun., 2009, 7303.
[66] Rodriguez-Llansola F, Escuder B, Miravet J F. J. Am. Chem. Soc., 2009, 131: 11478.
[67] Rodriguez-Llansola F, Miravet J F, Escuder B. Chem. Eur. J., 2010, 16: 8480.
[68] Sharma C V K, Broker G A, Huddleston J G, Baldwin J W, Metzger R M, Rogers R D. J. Am. Chem. Soc., 1999, 121: 1137.
[69] Shultz A M, Farha O K, Hupp J T, Nguyen S T. J. Am. Chem. Soc., 2009, 131: 4204.
[70] Sun C Y, Liu S X, Liang D D, Shao K Z, Ren Y H, Su Z M. J. Am. Chem. Soc., 2009, 131: 1883.
[71] Ma F J, Liu S X, Sun C Y, Liang D D, Ren G J, Wei F, Chen Y G, Su Z M. J. Am. Chem. Soc., 2011, 133: 4178.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[8] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[9] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[10] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[11] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[12] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[13] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[14] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[15] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.