English
新闻公告
More
化学进展 2015, Vol. 27 Issue (5): 601-613 DOI: 10.7536/PC141042 前一篇   后一篇

• 综述与评论 •

超顺磁性Fe3O4纳米粒子在磁共振造影中的应用

刘天辉, 常刚, 曹瑞军, 孟令杰*   

  1. 西安交通大学理学院化学系 西安 710049
  • 收稿日期:2014-10-01 修回日期:2015-01-01 出版日期:2015-05-15 发布日期:2015-03-16
  • 通讯作者: 孟令杰 E-mail:menglingjie@mail.xjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21174087, 21474079),教育部新世纪优秀人才计划(No.NCET-13-0453),中国博士后基金项目(No.2013M540738, 2014T70909)和中央高校基本科研业务费 (No.08142027, 08143101)资助

Applications of Superparamagnetic Fe3O4 Nanoparticles in Magnetic Resonance Imaging

Liu Tianhui, Chang Gang, Cao Ruijun, Meng Lingjie*   

  1. Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049, China
  • Received:2014-10-01 Revised:2015-01-01 Online:2015-05-15 Published:2015-03-16
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21174087, 21474079), the Program for New Century Excellent Talents in University (No.NCET-13-0453),the Postdoctoral Fund of China (No.2013M540738, 2014T70909), and the Fundamental Funds for the Central Universities (No.08142027, 08143101).
超顺磁性Fe3O4纳米粒子由于其廉价、低毒及超顺磁等特性,已成为重要的一类磁共振造影剂.本文综述了超顺磁性Fe3O4纳米粒子的可控制备方法,归纳总结影响粒径、结晶度和磁性能的主要因素和影响规律;为进一步提高磁性能并实现多功能,总结了Fe3O4纳米粒子进一步组装和表面改性的方法和机理;系统讨论了Fe3O4纳米粒子的形貌、尺寸和表面性能等对磁性能和生物相容性的影响规律;并指出了Fe3O4纳米粒子在磁共振造影领域潜在的发展方向和研究热点.
Fe3O4 nanomaterials have attracted tremendous attention in the field of magnetic resonance imaging (MRI) because of their low cost, good biocompatibility, favorable superparamagnetic properties. This article focuses on the controlled preparation methods of superparamagnetic Fe3O4 nanoparticles, and provides an in-depth discussion of the key factors and their influence rules for particle size, crystallinity and magnetic properties. The current status of available methodologies and mechanisms for the assembly and surface modification of Fe3O4 nanoparticles are highlighted to generate high performance and multifunction. We also systematically summarize the effect of particle size, morphology and surface properties on the magnetic and toxic properties of Fe3O4 nanoparticles. Finally, the future opportunities and challenges of Fe3O4 nanomaterials used as MRI contrast agents are addressed to our understanding.

Contents
1 Introduction
2 Controllable preparation of Fe3O4 nanoparticles
2.1 Thermal decomposition
2.2 Coprecipitation
2.3 Solvothermal
2.4 Sol-gel
2.5 Microemulsion
2.6 Sonochemical
3 Assembly of Fe3O4 nanoparticles
3.1 Zero-dimensional sphere
3.2 One-dimensional nanochain
3.3 Multidimensional assembly
4 Surface functionalization of Fe3O4 nanoparticles
4.1 Modified by SiO2
4.2 Modified by polymer
4.3 Multifunctional modification
5 Toxicity
6 MRI applications
6.1 Cell imaging
6.2 Tissue/organ imaging
7 Conclusion

中图分类号: 

()
[1] O'Neill C, Kurgansky M, Kaiser J, Lau W. PAIN Physician, 2008, 11:311.
[2] Kim C K, Park B K, Lee H M, Kim S S, Kim E J. Am. J. Roentgenol., 2008, 190:1180.
[3] Laurent S, Forge D, Port M, Roch A, Robic C, Elst L V, Muller R N. Chem. Rev., 2008, 108:2064.
[4] Laurent S, Forge D, Port M, Roch A, Robic C, Elst L V, Muller R N. Chem. Rev., 2008, 108:2064.
[5] Weissleder R, Moore A, Mahmood U, Bhorade R, Benveniste H, Chiocca E A, Basilion J P. Nat. Med., 2000, 6:351.
[6] Xie J, Chen K, Lee H Y, Xu C J, Hsu A R, Peng S, Chen X Y, Sun S H. J. Am. Chem. Soc., 2008, 130:7542.
[7] Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S. Adv. Mater., 2010, 22:2729.
[8] Yang C, Wu J, Hou Y. Chem. Commun., 2011, 47:5130.
[9] Bateer B, Qu Y, Tian C, Du S, Ren Z, Wang R, Pan K, Fu H. Mater. Res. Bull., 2014, 56:34.
[10] Abdulwahab K, Malik M A, O'Brien P, Govender K, Muryn C A, Timco G A, Tuna F, Winpenny R E P. Dalton Trans., 2012, 42:196.
[11] Bateer B, Tian C, Qu Y, Du S, Tan T, Wang R, Tian G, Fu H. CrystEngComm., 2013, 15:3366.
[12] Xu Z, Shen C, Hou Y, Gao H, Sun S. Chem. Mater., 2009, 21:1778.
[13] Roca A G, Morales M P, O Grady K, Serna C J. Nanotechnology, 2006, 17:2783.
[14] Chen Z P, Zhang Y, Zhang S, Xia J G, Liu J W, Xu K, Gu N. Colloids Surf. A, 2008, 316:210.
[15] Shavel A, Rodríguez-González B, Spasova M, Farle M, Liz-Marzán L M. Adv. Funct. Mater., 2007, 17:3870.
[16] Asuha S, Wan H L, Zhao S, Deligeer W, Wu H Y, Song L, Tegus O. Ceram Int., 2012, 38:6579.
[17] Jiang F, Li X, Zhu Y, Tang Z. Physica B, 2014, 443:1.
[18] Petcharoen K, Sirivat A. Mater. Sci. Eng. B-Solid, 2012, 177:421.
[19] Shen L, Qiao Y, Guo Y, Meng S, Yang G, Wu M, Zhao J. Ceram Int., 2014, 40:1519.
[20] Jiang W, Yang H C, Yang S Y, Horng H E, Hung J C, Chen Y C, Hong C. J. Magn. Magn. Mater., 2004, 283:210.
[21] Mahdavi M, Ahmad M, Haron M, Namvar F, Nadi B, Rahman M, Amin J. Molecules, 2013, 18:7533.
[22] Ramalakshmi M, Shakkthivel P, Sundrarajan M, Chen S M. Mater. Res. Bull., 2013, 48:2758.
[23] Zeng Y, Hao R, Xing B, Hou Y, Xu Z. Chem. Commun., 2010, 46:3920.
[24] Cheng W, Tang K, Qi Y, Sheng J, Liu Z. J. Mater. Chem., 2010, 20:1799.
[25] Wang Y, Zhu Q, Tao L. CrystEngComm., 2011, 13:4652.
[26] Xuan S, Wang Y J, Yu J C, Leung K C F. Chem. Mater., 2009, 21:5079.
[27] Zhang D, Zhang X, Ni X, Song J, Zheng H. Cryst. Growth Des., 2007, 7:2117.
[28] Gao S, Shi Y, Zhang S, Jiang K, Yang S, Li Z, Takayama-Muromachi E. J. Phys. Chem. C, 2008, 112:10398.
[29] Chen J, Wang F, Huang K, Liu Y, Liu S. J. Alloy Compd., 2009, 475:898.
[30] Li C Y, Wei Y J, Liivat A, Zhu Y H, Zhu J F. Mater. Lett., 2013, 107:23.
[31] Tadi? M, Kusigerski V, Markovi? D, Panjan M, Miloševi? I, Spasojevi? V. J. Alloy Compd., 2012, 525:28.
[32] Lemine O M, Omri K, Zhang B, El Mir L, Sajieddine M, Alyamani A, Bououdina M. Superlattices Microstruct., 2012, 52:793.
[33] Lu T, Wang J, Yin J, Wang A, Wang X, Zhang T. Colloids Surf. A, 2013, 436:675.
[34] Maleki H, Simchi A, Imani M, Costa B F O. J. Magn. Magn. Mater., 2012, 324:3997.
[35] Kim E H, Lee H S, Kwak B K, Kim B K. J. Magn. Magn. Mater., 2005, 289:328.
[36] Abbas M, Takahashi M, Kim C. J. Nanopart. Res., 2013, 15.
[37] Jun Y, Lee J, Cheon J. Angew. Chem. Int. Ed., 2008, 47:5122.
[38] Hu Y, He L, Yin Y. Angew. Chem. Int. Ed., 2011, 50:3747.
[39] Zhou J, Meng L, Feng X, Zhang X, Lu Q. Angew. Chem. Int. Ed., 2010, 49:8476.
[40] Zhang W, Shen F L, Hong R Y. Particuology, 2011, 9:179.
[41] Lu B Q, Zhu Y J, Zhao X Y, Cheng G F, Ruan Y J. Mater. Res. Bull., 2013, 48:895.
[42] Zhu Y, Zhao W, Chen H, Shi J. J. Phys. Chem. C, 2007, 111:5281.
[43] Yu D, Sun X, Zou J, Wang Z, Wang F, Tang K. J. Phys. Chem. B, 2006, 110:21667.
[44] Jia B, Gao L. J. Phys. Chem. C, 2008, 112:666.
[45] Ding Y, Hu Y, Jiang X, Zhang L, Yang C. Angew. Chem. Int. Ed., 2004, 43:6369.
[46] Zhang Y, Sun L, Zhai Y, Huang H B, Huang R S, Lu H X, Zhai H R. J. Appl. Phys., 2007, 101.
[47] Wang H, Chen Q, Sun L, Qi H, Yang X, Zhou S, Xiong J. Langmuir, 2009, 25:7135.
[48] Ma M, Zhang Q, Dou J, Zhang H, Geng W, Yin D, Chen S. Colloid. Polym. Sci., 2012, 290:1207.
[49] Kim Y, Choi Y S, Lee H J, Yoon H, Kim Y K, Oh M. Chem. Commun., 2014, 50:7617.
[50] Xiong Y, Ye J, Gu X, Chen Q W. J. Phys. Chem. C, 2007, 111:6998.
[51] Xi G, Wang C, Wang X. Eur. J. Inorg. Chem., 2008, 2008:425.
[52] Gao Q, Zhao A, Gan Z, Tao W, Li D, Zhang M, Guo H, Wang D, Sun H, Mao R, Liu E. CrystEngComm., 2012, 14:4834.
[53] Zhong L S, Hu J S, Liang H P, Cao A M, Song W G, Wan L J. Adv. Mater., 2006, 18:2426.
[54] Zhang Z J, Chen X Y, Wang B N, Shi C W. J. Cryst. Growth, 2008, 310:5453.
[55] Liu X, Duan X, Qin Q, Wang Q, Zheng W. CrystEngComm., 2013, 15:3284.
[56] Reddy L H, Arias J L, Nicolas J, Couvreur P. Chem. Rev., 2012, 112:5818.
[57] Lu Z, Dai J, Song X, Wang G, Yang W. Colloid Surf. A, 2008, 317:450.
[58] Hui C, Shen C, Tian J, Bao L, Ding H, Li C, Tian Y, Shi X, Gao H. Nanoscale, 2011, 3:701.
[59] Lu Y, Yin Y, Mayers B T, Xia Y. Nano Lett., 2002, 2:183.
[60] Arsalani N. Express Polym. Lett., 2010, 4:329.
[61] Wydra R J, Kruse A M, Bae Y, Anderson K W, Hilt J Z. Mater. Sci. Eng. C-Mater., 2013, 33:4660.
[62] Li J, Zheng L, Cai H, Sun W, Shen M, Zhang G, Shi X. Biomaterials, 2013, 34:8382.
[63] Hong R Y, Feng B, Chen L L, Liu G H, Li H Z, Zheng Y, Wei D G. Biochem. Eng. J., 2008, 42:290.
[64] Easo S L, Mohanan P V. Carbohydr. Polym., 2013, 92:726.
[65] Yu C, Gou L, Zhou X, Bao N, Gu H. Electrochim. Acta, 2011, 56:9056.
[66] Javid A, Ahmadian S, Saboury A A, Kalantar S M, Rezaei-Zarchi S. Chem. Biol. Drug Des., 2013, 82:296.
[67] Zhou T, Wu B, Xing D. J. Mater. Chem., 2011, 22:470.
[68] Hu Y, Meng L, Niu L, Lu Q. ACS Appl. Mater. Interfaces, 2013, 5:4586.
[69] Xu Z, Hou Y, Sun S. J. Am. Chem. Soc., 2007, 129:8698.
[70] Qi D, Zhang H, Tang J, Deng C, Zhang X. J. Phys. Chem. C, 2010, 114:9221.
[71] Sun L, Zhang C, Chen L, Liu J, Jin H, Xu H, Ding L. Anal. Chim. Acta, 2009, 638:162.
[72] Fan Q, Neoh K, Kang E, Shuter B, Wang S. Biomaterials, 2007, 28:5426.
[73] Hong S C, Lee J H, Lee J, Kim H Y, Park J Y, Cho J, Lee J, Han D W. Int. J. Nanomed., 2011, 6:3219.
[74] Karlsson H L, Gustafsson J, Cronholm P, Mller L. Toxicol. Lett., 2009, 188:112.
[75] Katsnelson B A, Degtyareva T D, Minigalieva I I, Privalova L I, Kuzmin S V, Yeremenko O S, Kireyeva E P, Sutunkova M P, Valamina I I, Khodos M Y, Kozitsina A N, Shur V Y, Vazhenin V A, Potapov A P, Morozova M V. Int. J. Toxicol., 2011, 30:59.
[76] Chen W, Yi P, Zhang Y, Zhang L, Deng Z, Zhang Z. ACS Appl. Mater. Interfaces, 2011, 3:4085.
[77] Yi P, Chen G, Zhang H, Tian F, Tan B, Dai J, Wang Q, Deng Z. Biomaterials, 2013, 34:3010.
[78] Sun P, Zhang H, Liu C, Fang J, Wang M, Chen J, Zhang J, Mao C, Xu S. Langmuir, 2010, 26:1278.
[79] Wang L, Neoh K, Kang E, Shuter B, Wang S. Biomaterials, 2010, 31:3502.
[80] Patel D, Kell A, Simard B, Xiang B, Lin H Y, Tian G. Biomaterials, 2011, 32:1167.
[81] Gao G H, Lee J W, Nguyen M K, Im G H, Yang J, Heo H, Jeon P, Park T G, Lee J H, Lee D S. J. Controlled Release, 2011, 155:11.
[82] Im G H, Kim S M, Lee D, Lee W J, Lee J H, Lee I S. Biomaterials, 2013, 34:2069.
[83] Kokuryo D, Anraku Y, Kishimura A, Tanaka S, Kano M R, Kershaw J, Nishiyama N, Saga T, Aoki I, Kataoka K. J. Controlled Release, 2013, 169:220.
[84] Lee H, Yu M K, Park S, Moon S, Min J J, Jeong Y Y, Kang H, Jon S. J. Am. Chem. Soc., 2007, 129:12739.
[85] Niu C, Wang Z, Lu G, Krupka T M, Sun Y, You Y, Song W, Ran H, Li P, Zheng Y. Biomaterials, 2013, 34:2307.
[86] Zhou J, Guo D, Zhang Y, Wu W, Ran H, Wang Z. ACS Appl. Mater. Interfaces, 2014, 6:5566.
[1] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[2] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[3] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[4] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[5] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[6] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[7] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[8] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[9] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[10] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[11] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[12] 程熙萌, 张庆瑞. 功能蛋白纳米材料在环境保护中的应用[J]. 化学进展, 2021, 33(4): 678-688.
[13] 杨世迎, 刘俊琴, 李乾风, 李阳. 机械球磨改性零价铝的作用机制[J]. 化学进展, 2021, 33(10): 1741-1755.
[14] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[15] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.