English
新闻公告
More
化学进展 2015, Vol. 27 Issue (5): 594-600 DOI: 10.7536/PC141133 前一篇   后一篇

• 综述与评论 •

蛋白质巯基亚硝基化分子机制及其疾病相关性

石婷1, 陈铭1, 陈雄平1, 汪汲涛1, 万锕俊2, 赵一雷*1   

  1. 1. 上海交通大学生命科学技术学院 上海 200240;
    2. 上海交通大学化学化工学院 上海 200240
  • 收稿日期:2014-11-01 修回日期:2015-01-01 出版日期:2015-05-15 发布日期:2015-03-16
  • 通讯作者: 赵一雷 E-mail:yileizhao@sjtu.edu.cn
  • 基金资助:
    国家重点基础研究发展计划(973)项目(No. 2012CB721005, 2013CB966802),国家自然科学基金项目(No. 21102090, J1210047)和上海市教委项目(No. 13YZ032)资助

Molecular Mechanism of Protein S-Nitrosylation and Its Correlation with Human Diseases

Shi Ting1, Chen Ming1, Chen Xiongping1, Wang Jitao1, Wan Ajun2, Zhao Yi-Lei*1   

  1. 1. School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2014-11-01 Revised:2015-01-01 Online:2015-05-15 Published:2015-03-16
  • Supported by:
    The work was supported by the National Basic Research Program of China (No. 2012CB721005, 2013CB966802), the National Natural Science Foundation of China (No. 21102090, J1210047), and the Shanghai Municipal Council of Science and Technology (No. 13YZ032).
蛋白质翻译后修饰对蛋白质生物学功能起着至关重要的作用.蛋白质巯基亚硝基化(S-nitrosylation,SNO)是一种一氧化氮相关的氧化还原型可逆修饰.它广泛存在于动物、植物和微生物中.近年来的研究表明SNO与蛋白质修饰位点的精细化学结构紧密关联,其中可能存在多种尚未证实的中间体.另一方面,研究发现SNO与肿瘤、炎症、衰老、阿尔茨海默症和帕金森综合症等许多重大疾病相关.为了进一步药物发现与疾病治疗研究的需要,本文对SNO的形成机理与研究现状进行了系统总结,并着重介绍了SNO与相关疾病的研究进展.
Protein S-nitrosylation (SNO) is a dynamic and reversible oxidative post-translational modification, widespread in mammals, plants and microorganisms. Previous mechanistic investigation with high-level quantum calculations indicated that many meta-stable intermediates present in the reaction pathway. On the other hand, S-nitrosylation level significantly changes in various human diseases, including tumor, inflammation, aging, Alzheimers disease (AD) and Parkinsons disease (PD). More intensive study has become an urgent need for drug and therapy development. In this paper, molecular mechanism and site-specificity of SNO are summarized, the biological functions are discussed, and especially the correlation between SNO and human diseases are presented.

Contents
1 Formation mechanism of S-nitrosylation (SNO)
2 Site specificity of SNO
3 Detection methods of SNO
4 Biological functions of SNO
5 SNO and diseases
5.1 SNO and transportation of blood
5.2 SNO and diabetes
5.3 SNO and neurodegenerative diseases
5.4 SNO and asthma symptoms
5.5 SNO and cancers
6 SNO and cell apoptosis
7 Conclusion

中图分类号: 

()
[1] Stamler J S. Cell, 1994, 78: 931.
[2] Zhao Y L, Houk K N, Olson L P. J. Phys. Chem. A, 2004, 108: 5864.
[3] Zhao Y L, Bartberger M D, Goto K, Shimada K, Kawashima T, Houk K N. J. Am. Chem. Soc., 2005, 127: 7964.
[4] Zhao Y L, Houk K N. J. Am. Chem. Soc., 2006, 128: 1422.
[5] Zhao Y L, McCarren P R, Houk K N, Choi B Y, Toone E J. J. Am. Chem. Soc., 2005, 127: 10917.
[6] Liang J, Cheng S, Hou J, Xu Z, Zhao Y L. Sci. China Chem., 2012, 55: 2081.
[7] Gaston B M. Mol. Interv., 2003, 3: 253.
[8] Greco T M, Hodara R, Parastatidis I, Heijnen H F G, Dennehy M K, Liebler D C, Ischiropoulos H. Proc. Natl. Acad. Sci.U.S.A., 2006, 103: 7420.
[9] Evangelista A M, Kohr M J, Murphy E. Antioxid. Redox Sign., 2012, 19: 1209.
[10] Cheng S, Shi T, Wang X L, Liang J, Wu H, Xie L, Li Y, Zhao Y L. Mol. Biosyst., 2014, 10: 2597.
[11] Marino S M, Gladyshev V N. J. Mol. Biol., 2010, 395: 844.
[12] Doulias P T, Greene J L, Greco T M, Tenopoulou M, Seeholzer S H, Dunbrack R L, Ischiropoulos H. Proc. Natl. Acad. Sci.U. S. A., 2010, 107: 16958.
[13] Kovacs I, Lindermayr C. Front. Plant Sci., 2013, 4: 137.
[14] Kelleher Z T, Sha Y, Foster M W, Foster W M, Forrester M T, Marshall H E. J. Biol. Chem., 2014, 289: 3066.
[15] Marshall H E, Hess D T, Stamler J S. Proc. Natl. Acad. Sci.U. S. A., 2004, 101: 8841.
[16] Fuentes-Prior P, Salvesen G S. Biochem. J., 2004, 384: 201.
[17] Chung K K, Thomas B, Li X, Pletnikova O, Troncoso J C, Marsh L, Dawson V L, Dawson T M. Science, 2004, 304: 1328.
[18] Martínez-Ruiz A, Villanueva L, González de Orduña C, López-Ferrer D, Higueras M A, Tarín C, Rodríguez-Crespo I, Vázquez J, Lamas S. Proc. Natl. Acad. Sci.U.S.A., 2005, 102: 8525.
[19] Tian J, Kim S F, Hester L, Snyder S H. Proc. Natl. Acad. Sci. U. S. A., 2008, 105: 10537.
[20] Kim S F, Huri D A, Snyder S H. Science, 2005, 310: 1966.
[21] Jaffrey S R, Snyder S H. Sci. Signal., 2001, 2001: l1.
[22] Basu S, Wang X, Gladwin M T, Kim-Shapiro D B. Methods Enzymol., 2008, 440: 137.
[23] Bechtold E, King S B. Antioxid. Redox Signal., 2012, 17: 981.
[24] Liu M, Hou J, Huang L, Huang X, Heibeck T H, Zhao R, Pasa-Tolic L, Smith R D, Li Y, Fu K, Zhang Z, Hinrichs S H, Ding S J. Anal. Chem., 2010, 82: 7160.
[25] Chen Y J, Ku W C, Lin P Y, Chou H C, Khoo K H, Chen Y J. J. Proteome Res., 2010, 9: 6417.
[26] Puyaubert J, Fares A, Rézé N, Peltier J B, Baudouin E. Plant Sci., 2014, 215/216: 150.
[27] Lee Y I, Giovinazzo D, Kang H C, Lee Y, Jeong J S, Doulias P T, Xie Z, Hu J, Ghasemi M, Ischiropoulos H, Qian J, Zhu H, Blackshaw S, Dawson V L, Dawson T M. Mol. Cell. Proteomics, 2014, 13: 63.
[28] Wang Y T, Piyankarage S C, Williams D L, Thatcher G R J. ACS Chem. Biol., 2014, 9: 821.
[29] Tennyson A G, Lippard S J. Chem. Biol., 2011, 18: 1211.
[30] Kornberg M D, Sen N, Hara M R, Juluri K R, Nguyen J V, Snowman A M, Law L, Hester L D, Snyder S H. Nat. Cell Biol., 2010, 12: 1094.
[31] Wu C, Parrott A M, Fu C, Liu T, Marino S M, Gladyshev V N, Jain M R, Baykal A T, Li Q, Oka S, Sadoshima J, Beuve A, Simmons W J, Li H. Antioxid. Redox Sign., 2011, 15: 2565.
[32] Martínez-Ruiz A, Araújo I M, Izquierdo-Álvarez A, Hernansanz-Agustín P, Lamas S, Serrador J M. Antioxid. Redox Sign., 2012, 19: 1220.
[33] Que L G, Liu L, Yan Y, Whitehead G S, Gavett S H, Schwartz D A, Stamler J S. Science, 2005, 308: 1618.
[34] Foster M W, Hess D T, Stamler J S. Trends Mol. Med., 2009, 15: 391.
[35] Martínez-Ruiz A, Lamas S. Cardiovasc Res., 2004, 62: 43.
[36] 陈畅(Chen C),黄波(Huang B),韩佩韦(Han P W),段绍瑾(Duan S J). 生物化学与生物物理进展(Progress in Biochemistry and Biophysics), 2006, 33(7): 609.
[37] 李一凡(Li Y F),张勇(Zhang Y). 生命的化学(Chemistry of Life), 2006, 26(6): 543.
[38] 张红志(Zhang H Z), 郭小勤(Guo X Q),郝中娜(Hao Z N),陶荣祥(Tao R X). 农业生物技术学报(Journal of Agricultural Biotechnology), 2008, 16(2): 351.
[39] 黄波(Huang B), 陈畅(Chen C). 生物物理学报(Acta Biophysica Sinica), 2012, 28(4): 268.
[40] Pawloski J R, Hess D T, Stamler J S. Nature, 2001, 409: 622.
[41] Gladwin M T, Crawford J H, Patel R P. Free Radic. Biol. Med., 2004, 36: 707.
[42] Lima B, Forrester M T, Hess D T, Stamler J S. Circ. Res., 2010, 106: 633.
[43] Bolotina V M, Najibi S, Palacino J J, Pagano P J, Cohen R A. Nature, 1994, 368: 850.
[44] Lipton A J, Johnson M A, Macdonald T, Lieberman M W, Gozal D, Gaston B. Nature, 2001, 413: 171.
[45] Westenberger U, Thanner S, Ruf H H, Gersonde K, Sutter G, Trentz O. Free Radic. Res. Commun., 1990, 11: 167.
[46] Jourd?euil D, Gray L, Grisham M B. Biochem. Biophys. Res. Commun., 2000, 273: 22.
[47] Milsom A, Jones C, Goodfellow J, Frenneaux M, Peters J, James P. Diabetologia, 2002, 45: 1515.
[48] Foster M W, McMahon T J, Stamler J S. Trends Mol. Med., 2003, 9: 160.
[49] Hao G, Derakhshan B, Shi L, Campagne F, Gross S S. Proc. Natl. Acad. Sci. U. S. A., 2006, 103: 1012.
[50] Abrams A J, Farooq A, Wang G. Biochem. (Mosc.), 2011, 50: 3405.
[51] Nakamura T, Lipton S A. Cell Death Differ., 2011, 18: 1478.
[52] Qu J, Nakamura T, Cao G, Holland E A, McKercher S R, Lipton S A. Proc. Natl. Acad. Sci.U.S.A., 2011, 108: 14330.
[53] Hess D T, Stamler J S. J. Biol. Chem., 2012, 287: 4411.
[54] Cho D H, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton S A. Science, 2009, 324: 102.
[55] Graves J D, Krebs E G. Pharmacol. Ther., 1999, 82: 111.
[56] Kim J H, Bugaj L J, Oh Y J, Bivalacqua T J, Ryoo S, Soucy K G, Santhanam L, Webb A, Camara A, Sikka G, Nyhan D, Shoukas A A, Ilies M, Christianson D W, Champion H C, Berkowitz D E. J. Appl. Physiol., 2009, 107: 1249.
[57] Santhanam L, Christianson D W, Nyhan D, Berkowitz D E. J. Appl. Physiol., 2008, 105: 1632.
[58] Wang Z. Cancer Lett., 2012, 320: 123.
[59] Iyer A K V, Rojanasakul Y, Azad N. Nitric Oxide., 2014, 42: 9.
[60] Hara M R, Snyder S H. Cell. Mol. Neurobiol., 2006, 26: 525.
[61] Tsang A H, Chung K K. Biochim. Biophys. Acta (BBA) Mol. Basis Dis., 2009, 1792: 643.
[62] Gu Z, Kaul M, Yan B, Kridel S J, Cui J, Strongin A, Smith J W, Liddington R C, Lipton S A. Science, 2002, 297: 1186.
[63] Li H, Wan A, Xu G, Ye D. Acta Biochim. Biophys. Sin., 2013, 45: 153.
[1] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[2] 张双玉, 胡韵璇, 李成, 徐新华. 微生物铁氧化还原作用对水中砷锑去除影响的研究进展[J]. 化学进展, 2022, 34(4): 870-883.
[3] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[4] 陈祥云, 袁冰, 于凤丽, 解从霞, 于世涛. 木质素:一种有潜力的生物质基催化剂来源[J]. 化学进展, 2021, 33(2): 303-317.
[5] 周汉强, 于明飞, 陈巧珊, 王建春, 毕进红. 碘氧化铋光催化剂的合成、改性及净化一氧化氮[J]. 化学进展, 2021, 33(12): 2404-2412.
[6] 徐梦婷, 王彦青, 毛亚, 李景娟, 江志东, 原鲜霞. 非水系锂空气电池催化剂[J]. 化学进展, 2021, 33(10): 1679-1692.
[7] 杨世迎, 任腾飞, 张艺萱, 郑迪, 辛佳. 水环境中ZVI/氧化剂体系及其电子迁移作用机制[J]. 化学进展, 2017, 29(4): 388-399.
[8] 杨世迎, 郑迪, 常书雅, 石超. 基于零价铝的氧化/还原技术在水处理中的应用[J]. 化学进展, 2016, 28(5): 754-762.
[9] 万晓梅, 张川, 余定华, 黄和, 胡燚. 碳纳米管固定化酶[J]. 化学进展, 2015, 27(9): 1251-1259.
[10] 许国贺, 李杰, 邓瑾妮, 殷绿, 郑朝晖, 丁小斌. 基于主客体识别的刺激响应型分子梭[J]. 化学进展, 2015, 27(12): 1732-1742.
[11] 马金莲, 马晨, 汤佳, 周顺桂, 庄莉. 电子穿梭体介导的微生物胞外电子传递:机制及应用[J]. 化学进展, 2015, 27(12): 1833-1840.
[12] 王刚, 陈金伟, 朱世富, 张洁, 刘效疆, 王瑞林. 全钒氧化还原液流电池碳素类电极的活化[J]. 化学进展, 2015, 27(10): 1343-1355.
[13] 王白云, 王晓玥, 王智文, 陈涛, 赵学明. 大肠杆菌氧化还原辅因子代谢工程[J]. 化学进展, 2014, 26(09): 1609-1618.
[14] 景晓彤, 于法标, 陈令新. 检测活性氮物种的荧光探针[J]. 化学进展, 2014, 26(05): 866-878.
[15] 王刚, 陈金伟, 汪雪芹, 田晶, 刘效疆, 王瑞林. 全钒氧化还原液流电池电解液[J]. 化学进展, 2013, 25(07): 1102-1112.