English
新闻公告
More
化学进展 2021, Vol. 33 Issue (9): 1482-1495 DOI: 10.7536/PC201104 前一篇   后一篇

• 综述 •

荧光纳米材料在病原微生物检测中的应用

赵丹1,2, 王昌涛1,2,*(), 苏磊1,3,*(), 张学记3   

  1. 1 北京工商大学北京食品营养与人类健康高精尖创新中心 北京 100048
    2 北京工商大学化学与材料工程学院 北京 100048
    3 深圳大学医学部生物医学工程学院 深圳 518060
  • 收稿日期:2020-11-04 修回日期:2020-12-12 出版日期:2021-09-20 发布日期:2020-12-28
  • 通讯作者: 王昌涛, 苏磊
  • 基金资助:
    国家自然科学基金项目(31971382)

Application of Fluorescence Nanomaterials in Pathogenic Bacteria Detection

Dan Zhao1,2, Changtao Wang1,2(), Lei Su1,3(), Xueji Zhang3   

  1. 1 Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China
    2 College of Chemistry and Materials Engineering, Beijing Technology & Business University,Beijing 100048, China
    3 School of Biomedical Engineering, Health Science Center, Shenzhen University,Shenzhen 518060, China
  • Received:2020-11-04 Revised:2020-12-12 Online:2021-09-20 Published:2020-12-28
  • Contact: Changtao Wang, Lei Su
  • Supported by:
    National Natural Science Foundation of China(31971382)

病原菌污染给人类的健康带来极大的安全隐患,对病原菌快速、准确和灵敏的检测是减少污染的重要手段。传统检测病原菌的方法存在耗时长和操作繁琐等缺点。荧光纳米材料具有荧光强度高、稳定性好以及良好的生物相容性等优势,为应用其构造传感器用于病原菌检测提供了新的研究途径。本文对近年来常见荧光纳米材料,包括半导体量子点、金属纳米簇、碳纳米材料、上转换纳米粒子和荧光硅纳米颗粒,在病原菌检测方面的应用进行了概述,着重将不同类别荧光纳米材料的光学性质和检测机理进行了分析和比较。纳米材料的生物修饰是实现病原菌特异性识别的重要环节,本文对抗体、适配体、噬菌体和抗生素等病原菌识别方式的特点及其与纳米材料的连接方式进行了介绍。最后对不同荧光纳米材料在检测病原菌中具有的优势和局限性进行了总结,并对其在未来的应用与研究重点进行了展望。

Pathogenic bacteria contamination brings severe safety problems to human health. Fast, accurate and sensitive detection of pathogenic bacteria is an important way to reduce pathogenic bacteria pollution. Traditional methods for detecting pathogenic bacteria have the disadvantages of being time-consuming and laborious. Fluorescent nanomaterials have the advantages of high fluorescence intensity, good stability and excellent biocompatibility, which provide a new research approach for the application of fluorescent nanomaterials as biosensors for pathogenic bacteria detection. This review summarizes the applications of various fluorescent nanomaterials in pathogenic bacteria detection in recent years, including semiconductor quantum dots, fluorescent metal nanoclusters, carbon nanomaterials, upconversion nanoparticles and fluorescent silicon nanoparticles. It mainly focuses on the analysis and comparison of the optical properties and detection mechanisms of different types of fluorescent nanomaterials. The bioconjugation of nanomaterials plays an important role in the whole process of pathogenic bacteria detection, which is closely related to the detection specificity. This article introduces the characteristics of different recognition elements, including antibodies, aptamers, phages and antibiotics. The conjunction methods between different recognition elements and nanomaterials are also discussed. Finally, the advantages and limitations of different nanomaterials for detecting pathogenic bacteria are reviewed and the development prospects in practical application and research priorities in the future are addressed.

Contents

1 Introduction

2 Application of fluorescent nanomaterials in detection of pathogenic bacteria

2.1 Quantum dots

2.2 Metal nanoclusters

2.3 Fluorescent carbon nanomaterials

2.4 Up-conversion nanomaterials

2.5 Fluorescent silica nanomaterials

3 Recognition methods

3.1 Specific recognition

3.2 Non-specific recognition

4 Conclusion and outlook

()
图1 基于荧光量子点的三明治法检测大肠杆菌示意图[13]
Fig.1 The schematic illustration of overall strategy using the fluorescence based sandwich immunoassay for enumeration of E. coli[13]. Copyright 2016, Elsevier
图2 利用装载有磁性纳米颗粒和量子点的双层通道荧光传感器检测大肠杆菌O157:H7示意图[14]
Fig.2 Schematic of the ultrasensitive fluorescent biosensor using double-layer channel with magnetic nanoparticle and quantum dots for rapid detection of E.coli O157:H7[14]. Copyright 2018, Elsevier
图3 利用Leu A 与金纳米簇对李斯特菌进行特异性检测示意图[24]
Fig.3 Schematic showing steps for specific detection of Listeria monocytogenes using leucocin A (Leu A) and gold nanoclusters[24]. Copyright 2018, American Chemical Society
图4 On-Off-On 为原理的金纳米簇荧光探针用于大肠杆菌快速检测示意图[25]
Fig.4 Schematic illustration of the working principle of the On-Off-On AuNCs-based fluorescent probe for rapid E. coli detection[25]. Copyright 2018, American Chemical Society
图5 以DNA为模板的银纳米簇与MNP-DNAzyme-AChE(MDA)复合体系用于检测病原菌的示意图[28]: (A) MDA复合体系识别大肠杆菌裂解物后释放AChE; (B) AChe催化ATCh得到TCh,促进DNA-AgNCs荧光增强
Fig.5 Schematic representation of DNA-templated fluorescent silver nanoclusters based sensing system for pathogenic bacterial detection integrated with MNP-DNAzyme-AChE complex[28]. Copyright 2018, Elsevier. (A) The MDA complex could recognize the target molecules lysed by bacteria and be cleaved to release AChE. (B) The AChE could catalyze the hydrolysis of ATCh to produce TCh and enhance the fluorescence of DNA-AgNCs
图6 利用新方法和传统方法进行病原菌检测对比示意图[35]
Fig.6 Illustration of the detection of pathogen bacteria with the proposed method and conventional method[35]. Copyright 2018, American Chemical Society
图7 基于三种不同受体功能化碳点用于细菌识别的示意图: (A) 碳点与细菌结合后荧光强度显著下降;(B)不同碳点与细菌结合后产生不同荧光[37]
Fig.7 Schematic illustration of pattern recognition of bacteria based on three different receptors-functionalized CDs. (A) Fluorescence intensity of CDs was significantly reduced due to the binding with bacteria. (B) Fluorescence pattern generated from the different responses of the CDs toward bacteria[37]. Copyright 2019, Elsevier
图8 从量子点到碳纳米颗粒的荧光共振能量转移法同时检测两种病原菌的示意图[38]
Fig.8 Schematic illustration of the dual fluorescence resonance energy transfer from QDs-apts to CNPs for the simultaneous detection of pathogenic bacteria[38]. Copyright 2014, Springer
图9 电化学发光传感器的合成步骤及检测过程[41]
Fig.9 Schematic presentation of the fabrication procedure of the biosensor and the detection process[41]. Copyright 2017, American Chemical Society
图10 基于适配体修饰的UNCPS用于同时检测不同种病原菌的多重发光检测[46]
Fig.10 Schematic illustration of the Multiplexed luminescence bioassay based on aptamers-modified UNCPS for the simultaneous detection of various pathogenic bacteria[46]. Copyright 2017, American Chemical Society
图11 基于上转换纳米颗粒荧光共振能量转移适配体传感器用于快速超灵敏的细菌检测[48]: (A) DNA适配体互补链的氨基与UCNPs 上的羧基通过缩合反应结合在一起;(B) DNA适配体上的巯基通过Au—S键与AuNPs结合;(C)AuNPs适配体与UCNPs互补链杂交形成供体-受体对,发生荧光共振能量转移,UCNPs荧光猝灭;(D)体系中引入目标细菌后,DNA适配体与细菌结合,使AuNPs与UCNPs解离,荧光恢复
Fig.11 Schematic illustration of upconversion nanoparticles based FRET aptasensor for rapid and ultrasensitive bacteria detection[48]. Copyright 2017, Elsevier. (A) The amino group of the complementary DNA of aptamer and the carboxyl group of UCNPs were attached by a condensation reaction; (B) The thiol-modified DNA aptamer binds to AuNPs through the Au—S chemistry; (C) The AuNPs aptamers and complementary chain of UCNPs hybridized and the FRET was established between a donor-acceptor pair and the fluorescence of UCNPs is quenched; (D) When the target bacteria appeared in the system, the DNA aptamer binded to the bacteria, so that AuNPs and UCNPs were dissociated and the fluorescence is restored
图12 通过特异性识别逐步打开荧光素装载的介孔硅的孔径从而实现对金黄色葡萄球菌进行检测示意图[57]
Fig.12 Schematic representation of stepwise determination of S.aureus by specific opening of the pores of fluorescein loaded nanokeepers[57]. Copyright 2016, Elsevier
[1]
Chen J H, Andler S M, Goddard J M, Nugen S R, Rotello V M. Chem. Soc. Rev., 2017, 46(5): 1272.

doi: 10.1039/C6CS00313C     URL    
[2]
Stephen Inbaraj B, Chen B H. J. Food Drug Anal., 2016, 24(1): 15.

doi: S1021-9498(15)00078-2     pmid: 28911398
[3]
Turner A P F. Chem. Soc. Rev., 2013, 42(8): 3184.

doi: 10.1039/c3cs35528d     URL    
[4]
Majdinasab M, Hayat A, Marty J L. Trac Trends Anal. Chem., 2018, 107: 60.

doi: 10.1016/j.trac.2018.07.016     URL    
[5]
Sai-Anand G, Sivanesan A, Benzigar M R, Singh G, Gopalan A I, Baskar A V, Ilbeygi H, Ramadass K, Kambala V, Vinu A. Bull. Chem. Soc. Jpn., 2019, 92(1): 216.

doi: 10.1246/bcsj.20180280     URL    
[6]
Chen L Y, Hwang E, Zhang J. Sensors, 2018, 18(5): 1440.

doi: 10.3390/s18051440     URL    
[7]
Walekar L, Dutta T, Kumar P, Ok Y S, Pawar S, Deep A, Kim K H. Trac Trends Anal. Chem., 2017, 97: 458.

doi: 10.1016/j.trac.2017.10.012     URL    
[8]
He X P, Hu X L, James T D, Yoon J, Tian H. Chem. Soc. Rev., 2017, 46(22): 6687.

doi: 10.1039/C6CS00778C     URL    
[9]
Mao S, Chang J B, Zhou G H, Chen J H. Small, 2015, 11(40): 5336.

doi: 10.1002/smll.v11.40     URL    
[10]
Zhang L J, Xia L, Xie H Y, Zhang Z L, Pang D W. Anal. Chem., 2019, 91(1): 532.

doi: 10.1021/acs.analchem.8b04721     URL    
[11]
Xu L Z. Doctoral Dissertation of Zhejiang University, 2016.
(徐李舟. 浙江大学博士论文, 2016)
[12]
Sutarlie L, Ow S Y, Su X D. Biotechnol. J., 2017, 12(4): 1500459.
[13]
Dogan Ü, Kasap E, Cetin D, Suludere Z, Boyaci I H, Türkyılmaz C, Ertas N, Tamer U. Sens. Actuat. B: Chem., 2016, 233: 369.

doi: 10.1016/j.snb.2016.04.081     URL    
[14]
Xue L, Zheng L Y, Zhang H L, Jin X, Lin J H. Sens. Actuat. B: Chem., 2018, 265: 318.

doi: 10.1016/j.snb.2018.03.014     URL    
[15]
Kim G, Moon J H, Moh C Y, Lim J G. Biosens. Bioelectron., 2015, 67: 243.

doi: 10.1016/j.bios.2014.08.023     URL    
[16]
Ebrahim S, Reda M, Hussien A, Zayed D. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2015, 150: 212.

doi: 10.1016/j.saa.2015.05.042     URL    
[17]
Yu J L, Su J, Zhang J, Wei X T, Guo A L. RSC Adv., 2017, 7(29): 17819.

doi: 10.1039/C7RA00821J     URL    
[18]
Wang B B, Wang Q, Cai Z X, Ma M H. LWT Food Sci. Technol., 2015, 61(2): 368.

doi: 10.1016/j.lwt.2014.12.016     URL    
[19]
Stanisavljevic M, Krizkova S, Vaculovicova M, Kizek R, Adam V. Biosens. Bioelectron., 2015, 74: 562.

doi: 10.1016/j.bios.2015.06.076     pmid: 26188679
[20]
Danesh N M, Bostan H B, Abnous K, Ramezani M, Youssefi K, Taghdisi S M, Karimi G. Trac Trends Anal. Chem., 2018, 99: 117.

doi: 10.1016/j.trac.2017.12.009     URL    
[21]
Jin R C, Zeng C J, Zhou M, Chen Y X. Chem. Rev., 2016, 116(18): 10346.

doi: 10.1021/acs.chemrev.5b00703     URL    
[22]
Li Y L. Master's Dissertation of Hunan University Master's Dissertation of Hunan University, 2016.
(李艳乐. 湖南大学硕士论文, 2016)
[23]
Cheng C, Yang L, Zhong M, Deng W F, Tan Y M, Xie Q J, Yao S Z. Anal., 2018, 143(17): 4067.

doi: 10.1039/C8AN00987B     URL    
[24]
Hossein-Nejad-ariani H, Kim T, Kaur K. ACS Appl. Nano Mater., 2018, 1(7): 3389.

doi: 10.1021/acsanm.8b00600     URL    
[25]
Yan R, Shou Z X, Chen J, Wu H, Zhao Y, Qiu L, Jiang P J, Mou X Z, Wang J H, Li Y Q. ACS Sustainable Chem. Eng., 2018, 6(4): 4504.

doi: 10.1021/acssuschemeng.8b00112     URL    
[26]
Hodgkinson V, Petris M J. J. Biol. Chem., 2012, 287(17): 13549.

doi: 10.1074/jbc.R111.316406     pmid: 22389498
[27]
Zheng L B, Ye X Y, Qi P, Zhang D, Sun Y. Microchimica Acta, 2019, 186(6): 382.

doi: 10.1007/s00604-019-3427-4     URL    
[28]
Zheng L B, Qi P, Zhang D. Sens. Actuat. B: Chem., 2018, 276: 42.

doi: 10.1016/j.snb.2018.08.078     URL    
[29]
Du Y, Guo S J. Nanoscale, 2015,8.
[30]
Cui F C, Ye Y L, Ping J F, Sun X L. Biosens. Bioelectron., 2020, 156: 112085.

doi: 10.1016/j.bios.2020.112085     URL    
[31]
Zheng X T, Ananthanarayanan A, Luo K Q, Chen P. Small, 2015, 11(14): 1620.

doi: 10.1002/smll.201402648     pmid: 25521301
[32]
Chung S, Revia R A, Zhang M Q. Adv. Mater., 2021, 33(22): 1904362.

doi: 10.1002/adma.v33.22     URL    
[33]
Shi X B, Wei W, Fu Z D, Gao W L, Zhang C Y, Zhao Q, Deng F M, Lu X Y. Talanta, 2019, 194: 809.

doi: 10.1016/j.talanta.2018.11.005     URL    
[34]
Nandi S, Ritenberg M, Jelinek R. Anal., 2015, 140(12): 4232.

doi: 10.1039/C5AN00471C     URL    
[35]
Yang L, Deng W F, Cheng C, Tan Y M, Xie Q J, Yao S Z. ACS Appl. Mater. Interfaces, 2018, 10(4): 3441.

doi: 10.1021/acsami.7b18714     URL    
[36]
Bhaisare M L, Gedda G, Khan M S, Wu H F. Anal. Chimica Acta, 2016, 920: 63.

doi: 10.1016/j.aca.2016.02.025     URL    
[37]
Zheng L B, Qi P, Zhang D. Sens. Actuat. B: Chem., 2019, 286: 206.

doi: 10.1016/j.snb.2019.01.147     URL    
[38]
Duan N, Wu S J, Dai S L, Miao T T, Chen J, Wang Z P. Microchimica Acta, 2015, 182(5/6): 917.

doi: 10.1007/s00604-014-1406-3     URL    
[39]
Safardoust-Hojaghan H, Salavati-Niasari M, Amiri O, Hassanpour M. J. Mol. Liq., 2017, 241: 1114.

doi: 10.1016/j.molliq.2017.06.106     URL    
[40]
Dong Y Q, Shao J W, Chen C Q, Li H, Wang R X, Chi Y W, Lin X M, Chen G N. Carbon, 2012, 50(12): 4738.

doi: 10.1016/j.carbon.2012.06.002     URL    
[41]
Chen S F, Chen X Q, Zhang L J, Gao J J, Ma Q. ACS Appl. Mater. Interfaces, 2017, 9(6): 5430.

doi: 10.1021/acsami.6b12455     URL    
[42]
Tajik S, Dourandish Z, Zhang K Q, Beitollahi H, Le Q V, Jang H W, Shokouhimehr M. RSC Adv., 2020, 10(26): 15406.

doi: 10.1039/D0RA00799D     URL    
[43]
Feng A L, You M L, Tian L M, Singamaneni S, Liu M, Duan Z F, Lu T J, Xu F, Lin M. Sci. Rep., 2015, 5(1): 7779.

doi: 10.1038/srep07779     URL    
[44]
DaCosta M V, Doughan S, Han Y, Krull U J. Anal. Chimica Acta, 2014, 832: 1.

doi: 10.1016/j.aca.2014.04.030     URL    
[45]
Liang G F, Wang H J, Shi H, Wang H T, Zhu M X, Jing A H, Li J H, Li G D. J. Nanobiotechnology, 2020, 18(1): 154.

doi: 10.1186/s12951-020-00713-3     URL    
[46]
Wu S J, Duan N, Shi Z, Fang C C, Wang Z P. Anal. Chem., 2014, 86(6): 3100.

doi: 10.1021/ac404205c     URL    
[47]
Kurt H, Yüce M, Hussain B, Budak H. Biosens. Bioelectron., 2016, 81: 280.

doi: 10.1016/j.bios.2016.03.005     URL    
[48]
Jin B R, Wang S R, Lin M, Jin Y, Zhang S J, Cui X Y, Gong Y, Li A, Xu F, Lu T J. Biosens. Bioelectron., 2017, 90: 525.

doi: 10.1016/j.bios.2016.10.029     URL    
[49]
Han Y X, Chen Y L, Liu J J, Niu X Y, Ma Y X, Ma S D, Chen X G. Sens. Actuat. B: Chem., 2018, 263: 508.

doi: 10.1016/j.snb.2018.02.163     URL    
[50]
Yang S B, Li Y S. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2020, 12(3):e1603.
[51]
Ma S D, Chen Y L, Feng J, Liu J J, Zuo X W, Chen X G. Anal. Chem., 2016, 88(21): 10474.

doi: 10.1021/acs.analchem.6b02448     URL    
[52]
Ruedas-Rama M J, Walters J D, Orte A, Hall E A H. Anal. Chimica Acta, 2012, 751: 1.

doi: 10.1016/j.aca.2012.09.025     URL    
[53]
Zhang X D, Chen X K, Kai S Q, Wang H Y, Yang J J, Wu F G, Chen Z. Anal. Chem., 2015, 87(6): 3360.

doi: 10.1021/ac504520g     URL    
[54]
Wu C L, Hong J Q, Guo X Q, Huang C B, Lai J P, Zheng J S, Chen J B, Mu X, Zhao Y B. Chem. Commun., 2008(6): 750.
[55]
Bhardwaj N, Bhardwaj S K, Nayak M K, Mehta J, Kim K H, Deep A. Trac Trends Anal. Chem., 2017, 97: 120.

doi: 10.1016/j.trac.2017.09.010     URL    
[56]
Zhao X, Bagwe R P, Tan W. Adv. Mater., 2004, 16(2): 173.

doi: 10.1002/(ISSN)1521-4095     URL    
[57]
Borsa B A, Tuna B G, Hernandez F J, Hernandez L I, Bayramoglu G, Arica M Y, Ozalp V C. Biosens. Bioelectron., 2016, 86: 27.

doi: 10.1016/j.bios.2016.06.023     URL    
[58]
Wang Q Y, Kang Y J. Nanoscale Res. Lett., 2016, 11(1): 150.

doi: 10.1186/s11671-016-1359-z     URL    
[59]
Chen Z Z, Cai L, Chen M Y, Lin Y, Pang D W, Tang H W. Biosens. Bioelectron., 2015, 66: 95.

doi: 10.1016/j.bios.2014.11.007     URL    
[60]
Na M, Zhang S P, Liu J J, Ma S D, Han Y X, Wang Y, He Y X, Chen H L, Chen X G. J. Hazard. Mater., 2020, 386: 121956.

doi: 10.1016/j.jhazmat.2019.121956     URL    
[61]
Thévenot D R, Toth K, Durst R A, Wilson G S. Biosens. Bioelectron., 2001, 16(1/2): 121.

doi: 10.1016/S0956-5663(01)00115-4     URL    
[62]
Silva N F D, Magalhães J M C S, Freire C, Delerue-Matos C. Biosens. Bioelectron., 2018, 99: 667.

doi: 10.1016/j.bios.2017.08.019     URL    
[63]
Biju V. Chem. Soc. Rev., 2014, 43(3): 744.

doi: 10.1039/C3CS60273G     URL    
[64]
Tao X Q, Wang X, Liu B W, Liu J W. Biosens. Bioelectron., 2020, 168: 112537.

doi: 10.1016/j.bios.2020.112537     URL    
[65]
Tombelli S, Minunni M, Mascini M. Biomol. Eng., 2007, 24(2): 191.

pmid: 17434340
[66]
Labuda J, Brett A M O, Evtugyn G, Fojta M, Mascini M, Ozsoz M, Palchetti I, Paleček E, Wang J. Pure Appl. Chem., 2010, 82(5): 1161.

doi: 10.1351/PAC-REP-09-08-16     URL    
[67]
Tombelli S, Minunni M, Mascini M. Biosens. Bioelectron., 2005, 20(12): 2424.

pmid: 15854817
[68]
Lim Y C, Kouzani A Z, Duan W. J.Biomed. Nanotechnol., 2010, 6(2): 93.
[69]
Kim Y S, Chung J, Song M Y, Jurng J, Kim B C. Biosens. Bioelectron., 2014, 54: 195.

doi: 10.1016/j.bios.2013.11.003     URL    
[70]
Zhang X Y, Khan I M, Ji H, Wang Z P, Tian H L, Cao W B, Mi W Y. Polymers, 2020, 12(1): 152.

doi: 10.3390/polym12010152     URL    
[71]
Duan N, Wu S J, Zhu C Q, Ma X Y, Wang Z P, Yu Y, Jiang Y. Anal. Chimica Acta, 2012, 723: 1.

doi: 10.1016/j.aca.2012.02.011     URL    
[72]
Duan N, Wu S J, Yu Y, Ma X Y, Xia Y, Chen X J, Huang Y K, Wang Z P. Anal. Chimica Acta, 2013, 804: 151.

doi: 10.1016/j.aca.2013.09.047     URL    
[73]
Yi J C, Xiao W, Li G Y, Wu P, He Y Y, Chen C M, He Y F, Ding P, Kai T H. Appl. Microbiol. Biotechnol., 2020, 104(23): 9877.

doi: 10.1007/s00253-020-10940-1     URL    
[74]
Farooq U, Yang Q L, Ullah M W, Wang S Q. Biosens. Bioelectron., 2018, 118: 204.

doi: S0956-5663(18)30569-4     pmid: 30081260
[75]
van der Merwe R G, van Helden P D, Warren R M, Sampson S L,van Pittius N C G. Anal., 2014, 139(11): 2617.

doi: 10.1039/C4AN00208C     URL    
[76]
Richter Ł, Janczuk-Richter M, Niedziółka-Jönsson J, Paczesny J, Hołyst R. Drug Discov. Today, 2018, 23(2): 448.

doi: S1359-6446(17)30297-0     pmid: 29158194
[77]
Edgar R, McKinstry M, Hwang J, Oppenheim A B, Fekete R A, Giulian G, Merril C, Nagashima K, Adhya S. PNAS, 2006, 103(13): 4841.

doi: 10.1073/pnas.0601211103     URL    
[78]
Chen J H, Duncan B, Wang Z Y, Wang L S, Rotello V M, Nugen S R. Nanoscale, 2015, 7(39): 16230.

doi: 10.1039/C5NR03779D     URL    
[79]
Oda M, Morita M, Unno H, Tanji Y. Appl. Environ. Microbiol., 2004, 70(1): 527.

doi: 10.1128/AEM.70.1.527-534.2004     URL    
[80]
Meile S, Sarbach A, Du J M, Schuppler M, Saez C, Loessner M J, Kilcher S. Appl. Environ. Microbiol., 2020, 86(11): e00442. DOI: 10.1128/aem.00442-20

doi: 10.1128/aem.00442-20    
[81]
Tokonami S, Iida T. Anal. Chimica Acta, 2017, 988: 1.

doi: 10.1016/j.aca.2017.07.034     URL    
[82]
Li Z M, Ma J Y, Ruan J, Zhuang X. Nanoscale Res. Lett., 2019, 14(1): 195.

doi: 10.1186/s11671-019-3005-z     URL    
[83]
Li J, Wu L J, Guo S S, Fu H E, Chen G N, Yang H H. Nanoscale, 2013, 5(2): 619.

doi: 10.1039/C2NR32704J     URL    
[84]
Chen J H, Jiang Z W, Ackerman J D, Yazdani M, Hou S, Nugen S R, Rotello V M. Anal., 2015, 140(15): 4991.

doi: 10.1039/C5AN00637F     URL    
[85]
Raj V, Vijayan A N, Joseph K. Sens. Bio Sens. Res., 2015, 5: 33.
[86]
Zhang C Y, Wang C W, Xiao R, Tang L, Huang J, Wu D, Liu S W, Wang Y, Zhang D, Wang S Q, Chen X M. J. Mater. Chem. B, 2018, 6(22): 3751.

doi: 10.1039/C8TB00504D     URL    
[87]
Zheng L B, Wan Y, Yu L M, Zhang D. Talanta, 2016, 146: 299.

doi: 10.1016/j.talanta.2015.08.056     URL    
[88]
You Q, Zhang X D, Wu F G, Chen Y. Sens. Actuat. B: Chem., 2019, 281: 408.

doi: 10.1016/j.snb.2018.10.103     URL    
[89]
Zhong D, Zhuo Y, Feng Y J, Yang X M. Biosens. Bioelectron., 2015, 74:546.

doi: 10.1016/j.bios.2015.07.015     pmid: 26188677
[90]
Liu J L, Lu L L, Xu S Y, Wang L Y. Talanta, 2015, 134: 54.

doi: 10.1016/j.talanta.2014.10.058     URL    
[91]
Chandra S, Mahto T K, Chowdhuri A R, Das B, Sahu S K. Sens. Actuat. B: Chem., 2017, 245: 835.

doi: 10.1016/j.snb.2017.02.017     URL    
[92]
Chandra S, Chowdhuri A R, Mahto T K, Samui A, Sahu S K. RSC Adv., 2016, 6(76): 72471.

doi: 10.1039/C6RA15778E     URL    
[93]
Cooper R M, Leslie D C, Domansky K, Jain A, Yung C, Cho M, Workman S, Super M, Ingber D E. Lab Chip, 2014, 14(1): 182.

doi: 10.1039/c3lc50935d     pmid: 24169822
[94]
El-Boubbou K, Gruden C, Huang X F. J. Am. Chem. Soc., 2007, 129(44): 13392.

doi: 10.1021/ja076086e     URL    
[95]
Wolfbeis O S. Chem. Soc. Rev., 2015, 44(14): 4743.

doi: 10.1039/c4cs00392f     pmid: 25620543
[96]
Muniandy S, Teh S J, Thong K L, Thiha A, Dinshaw I J, Lai C W, Ibrahim F, Leo B F. Crit. Rev. Anal. Chem., 2019, 49(6): 510.

doi: 10.1080/10408347.2018.1561243     pmid: 30648398
[1] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[2] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[3] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[4] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[5] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[6] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[7] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[8] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[9] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[10] 颜廷义, 张光耀, 喻琨, 李梦洁, 曲丽君, 张学记. 基于智能手机的即时检测[J]. 化学进展, 2022, 34(4): 884-897.
[11] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[12] 田浩, 李子木, 汪长征, 许萍, 徐守芳. 分子印迹荧光传感构建及应用[J]. 化学进展, 2022, 34(3): 593-608.
[13] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[14] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[15] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.