English
新闻公告
More
化学进展 2013, Vol. 25 Issue (11): 1981-1988 DOI: 10.7536/PC130145 前一篇   

• 综述与评论 •

巨介电CCTO及CCTO/聚合物研究

王亚军*, 王芳芳, 冯长根, 曾庆轩   

  1. 北京理工大学 爆炸科学与技术国家重点实验室 北京 100081
  • 收稿日期:2013-01-01 修回日期:2013-04-01 出版日期:2013-11-15 发布日期:2013-09-12
  • 通讯作者: 王亚军 E-mail:yajunwang@bit.edu.cn
  • 基金资助:

    爆炸科学与技术国家重点实验室(北京理工大学)自主课题项目(No.YBKT14-09)和北京理工大学基础研究基金项目(No.20120242013)资助

CCTO with Giant Dielectric Constant and CCTO/Polymer Composite

Wang Yajun*, Wang Fangfang, Feng Changgen, Zeng Qingxuan   

  1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
  • Received:2013-01-01 Revised:2013-04-01 Online:2013-11-15 Published:2013-09-12

具有类钙钛矿结构的钛酸铜钙CaCu3Ti4O12(CCTO)介电陶瓷材料以其巨介电特性、介电常数的温度和频率稳定性及非线性等特性在材料研究领域和实际应用中受到广泛关注。本文比较了CCTO各种巨介电理论和模型,详述了目前能够较合理地解释CCTO巨介电特性的内部阻挡层电容模型(IBLC)。综述了制备方法、制备条件及改性方法对CCTO介电性能的影响。离子掺杂是降低CCTO介电损耗常用的方法之一,掺杂效果受掺杂离子半径、离子价态等多种因素的影响。将陶瓷粉体与聚合物进行复合形成0-3型复合材料是目前制备综合性能良好的介电材料的有效方法,对CCTO/聚合物复合材料的研究进展进行了评述。最后,展望了CCTO陶瓷材料的发展前景。

Perovskite-like structure CaCu3Ti4O12 (CCTO) dielectric ceramic has been paid much attention in the field of materials science and application for its colossal dielectric constant, independence of dielectric properties on the frequency and temperature in a wide range, and nonlinear behaviors. Various theories and models which are used to explain the original of colossal dielectric constant of CCTO are compared, among which the internal barrier layer capacitance (IBLC), the most reasonable model is claimed in detail. Preparing methods, preparing conditions and various modification methods for preparing CCTO and improving the dielectric properties are discussed. Ion-doping is the most popular way to decrease the dielectric loss of CCTO. The effects of ion-doping depend on the ionic radius, ionic valence and so on. It is a promising way to prepare the 0-3 composites by using ceramic as filler and polymer as matrix. The research progress of CCTO/polymer composites is discussed here. And the prospects of CCTO is put forward.

Contents
1 Introduction
2 Origin of giant dielectric constant of CCTO
2.1 Classical model
2.2 Internal barrier layer capacitance (IBLC) model
3 Preparation of CCTO
3.1 Preparation of CCTO powder
3.2 Method for reducing sintering temperature and time of CCTO
3.3 Preparation of CCTO film
4 Improvement of the properties of CCTO
4.1 A or B site doping of CCTO
4.2 Substitution of CCTO
5 CCTO/polymer composite
5.1 CCTO/polymer composite and mixture model
5.2 Improvement of the interfacial properties of CCTO/polymer
5.3 Three-phase composite
6 Conclusion

中图分类号: 

()

[1] 孙泉(Sun Q). 集成电路应用(Appl. IC), 2004, 8: 30—31
[2] 张建辉(Zhang J H). 金属功能材料(Met. Funct. Mater. ), 2007, 3: 37—40
[3] Bochu B, Deschizeaux M N, Joubert J C, Collomb A, Chenavas J, Marezio M. J. Solid State Chem., 1979, 29(2): 291—298
[4] Krohns S, Lunkenheimer P, Kant C, Pronin A V, Brom H B, Nugroho A A, Diantoro M, Loidl A. Appl. Phys. Lett., 2009, 94: art. no. 122903
[5] Zhang L J, Zheng P, Wang C L, Zhao M L, Li J C, Wang J F. Appl. Phys. Lett., 2005, 87: art. no. 142901
[6] Mashingboon C, Thongbai P, Maensiri S, Yamwong T, Seraphin S. Mater. Chem. Phys., 2008, 109: 262—270
[7] Byeong K K, Hyung S L, Lee J W, Seung E L, Yong S C. J. Am. Ceram. Soc., 2010, 93(9): 2419—2422
[8] Chung S Y, Kim I D, Kang S J. Nat. Mater., 2004, 3: 774—778
[9] Si W, Cruz E M, Johnson P D, Barnes P W, Woodward P. Appl. Phys. Lett., 2002, 81(11): 2056—2059
[10] 周小莉(Zhou X L), 杜丕一(Du P Y). 无机材料学报(J. Inorg. Mater. ), 2005, 20(2): 484—488
[11] Subramanian M A, Li D, Duan N, Reisner B A, Sleight A W. J. Solid State Chem., 2000, 151: 323—325
[12] He L X, Neaton J B, Cohenet M H, Vanderbilt D. Phys. Rev. B, 2002, 65: art. no. 214112
[13] Zhu Y, Zheng J C, Wu L, Frenkel A I, Hanson J, Northrup P, Ku W. Phys. Rev. Lett., 2007, 99: art. no. 037602
[14] Lunkenheimer P, Bobnar V, Proninet A V, Ritus A I, Volkov A A, Loidl A. Phys. Rev. B, 2002, 66: art. no. 052105
[15] Lunkenheimer P, Ficht R, Ebbinghaus S G, Loidl A. Phys. Rev. B, 2004, 70: art. no. 172102
[16] Sinclair D C, Adams T B, Morrison F D, West A R. Appl. Phys. Lett., 2002, 80(12): 2153—2156
[17] Sebald J, Krohnsa S, Lunkenheimera P, Ebbinghaus S G, Riegg S, Reller A, Loidl A. Solid State Commun., 2010, 150: 857—860
[18] Schmidt R, Stennett M C, Hyatt N C, Pokorny J, Gonjal J P, Li M, Sinclair D C. J. Eur. Ceram. Soc., 2012, 32: 3313—3323
[19] Fang T T, Shiau H K. J. Am. Ceram. Soc., 2004, 87(11): 2072—2079
[20] Cao G H, Feng L X, Wang C. J. Phys. D: Appl. Phys., 2007, 40(9): 2899—2905
[21] Adams T B, Sinclair D C, West A R. Adv. Mater., 2002, 14(8): 1321—1323
[22] Wang C, Zhang H J, He P M, Cao G H. Appl. Phys. Lett., 2007, 91: art. no. 052910
[23] Fang T T, Liu C P. Chem. Mater., 2005, 17: 5167—5171
[24] 熊利蓉(Xiong L R). 陕西师范大学博士论文(Doctoral Dissertation of Shaanxi Normal University), 2010
[25] Leret P, Rubia M A, Rubio-Marcos R, Romero J J, Fernandez J F. Int. J. Appl. Ceram. Tec., 2011, 8(5): 1201—1207
[26] Sun D L, Wu A Y, Yin S T. J. Am. Ceram. Soc., 2007, 91(1): 169—173
[27] 杨雁(Yang Y), 李盛涛(Li S T). 无机材料学报(J. Inorg. Mater. ), 2010, 25(8): 835—839
[28] 马广(Ma G), 赵景畅(Zhao J C), 吴兴惠(Wu X H). 材料导报: 研究篇(Mater. Rev. ), 2010, 24(4): 86—88
[29] Masingboon C, Thongbai P, Maensiri S, Yamwong T, Seraphin S. Mater. Chem. Phys., 2008, 109: 262—270
[30] Lu J J, Wang D Q, Zhao C J. J. Alloys Compd., 2011, 509: 3103—3107
[31] 叶中郎(Ye Z L), 朱泽华(Zhu Z H), 高红霞(Gao H X), 谢兆军(Xie Z J), 赵海杰(Zhao H J). 功能材料与器件学报(J. Fun. Mater. Devi. ), 2011, 5: 436—439
[32] Vangchangyia S, Swatsitang E, Thongbai P, Pinitsoontorn S, Yamwong T, Maensiri S, Amornkitbamrung V, Chindaprasirt P. J. Am. Chem. Soc., 2012, 95(5): 1497—1500
[33] 杨昌辉(Yang C H), 周小莉(Zhou X L), 徐刚(Xu G), 韩高荣(Han G R), 翁文剑(Weng W J), 杜丕一(Du P Y). 硅酸盐学报(J. Chin. Ceram. Soc. ), 2006, 6: 753—756
[34] Kumar C. J. Mater. Sci.-Mater. Electron., 2011, 22: 579—582
[35] Prakash B S, Varma K B R. J. Solid State Chem., 2007, 180: 1918—1927
[36] Goswami S, Sen A. Ceram. Int., 2010, 36: 1629—1631
[37] Zhao Y L, Pana G W, Rena Q B, Cao Y G, Feng L X, Jiao Z K. Thin Solid Films, 2003, 445: 7—13
[38] 周小莉(Zhou X L), 杜丕一(Du P Y), 韩高荣(Han G R), 翁文剑(Weng W J). 浙江大学学报(工学版)(J. Zhejiang University (Engineering Science)), 2006, 40(8): 1446—1450
[39] Saji V S, Choe H C. Bull. Mater. Sci., 2010, 33(3): 203—207
[40] Yan Y, Jin L, Feng L. Mater. Sci. Eng. B, 2006, 130(1/3): 146—150
[41] Krohns S, Lu J, Lunkenheimer P, Brize V, Lambert C A, Gervais M, Gervais F, Bouree F, Porcher F, Loidl A. The Eur. Phys. J. B, 2009, 72: 173—182
[42] Feng L X, Tang X M, Yan Y Y, Chen X A, Jiao Z K, Cao G H. Phys. Status Solidi A, 2006, 4(203): R22—R24
[43] 邵守福(Shao S F), 董凡(Dong F), 张家良(Zhang J L). 电子元件与材料(Electro. Compo. Mater. ), 2010, 12: 21—24
[44] Xu L F, Qi P B, Song X P, Luo J X, Yang P C. J. Alloys Compd., 2011, 509: 7697—7701
[45] Luo F C, He J L, Hu J, Lin Y H. J. Am. Chem. Soc., 2006, 93(10): 3042—3045
[46] Kwon S, Huang C C, Patterson E A, Cann D P, Albert E F, Kwon S, Hackenberger W S, Cann D P. Mater. Lett., 2008, 62: 633—636
[47] Sulaiman M A, Hutagalunga S D, Ainb M F, Ahmad Z A. J. Alloys Compd., 2010, 493: 486—492
[48] Smith A E, Calvarese T G, Sleight A W, Subramanian M A. J. Solid State Chem., 2009, 182: 409—411
[49] Ardakani H A, Alizadeh M, Amini R, Ghazanfari M R. Ceram. Int., 2012, 38: 4217—4220
[50] Almeida A F L, Fechine P B A, Góesb J C, Valente M A, Miranda M A R, Sombrab A S B. Mater. Sci. Eng. B, 2004, 111: 113—123
[51] Yan Y, Jin L, Feng L. Mater. Sci. Eng. B, 2006, 130: 146—150
[52] Yu H T, Liu H X, Hao H, Luo D B, Cao M H. Mater. Lett., 2008, 62: 1353—1355
[53] Bender B A, Pan M J. Mater. Sci. Eng. B, 2005, 117: 339—347
[54] Zhang L, Shan X B, Wu P X, Song J L, Cheng Z Y. Ferroelectrics, 2010, 405: 92—97
[55] Shan X. Doctoral Dissertation of Auburn University, 2009
[56] Thomas P, Dwarakanath K, Varma R B K. Synth. Met., 2009, 159: 2128—2134
[57] Dang Z M, Zhou T, Yao S H, Yuan J K, Zha J W, Song H T, Li J Y, Chen Q, Yang W T, Bai J B. Adv. Mater., 2009, 21: 2077—2082
[58] Dang Z M, Yuan J K, Zha J W, Zhou T, Li S T, Hu G H. Prog. Mater Sci., 2012, 57: 660—723
[59] Prakash B S, Varma K B R. Compos. Sci. Technol., 2007, 67: 2363—2368
[60] Thomas P, Varughese K T, Dwarakanath K, Varma K B R. Compos. Sci. Technol., 2010, 70: 539—545
[61] Shen Y P, Gu A J, Liang G Z, Yuan L. Composites: Part A, 2010, 41: 1668—1676
[62] Yang W H, Yu S H, Sun R, Ke S M, Huang H T, Du R X. J. Phys. D: Appl. Phys., 2011, 44: art. no. 475305

[1] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[2] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[3] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[4] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[5] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[6] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[7] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[8] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[9] 张天永, 吴畏, 朱剑, 李彬, 姜爽. 基于纳米碳填料可拉伸导电聚合物复合材料的制备[J]. 化学进展, 2021, 33(3): 417-425.
[10] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[11] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[12] 肖晶晶, 王牧, 张伟杰, 赵秀英, 冯岸超, 张立群. 铅卤钙钛矿-聚合物复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1731-1740.
[13] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[14] 贾航, 乔越, 张玉, 孟庆鑫, 刘程, 蹇锡高. 玄武岩纤维增强树脂基复合材料界面改性策略[J]. 化学进展, 2020, 32(9): 1307-1315.
[15] 张志, 邹晨涛, 杨水金. 基于钨(钼)酸铋半导体复合材料的合成及其在光催化降解中的应用[J]. 化学进展, 2020, 32(9): 1427-1436.
阅读次数
全文


摘要

巨介电CCTO及CCTO/聚合物研究