English
新闻公告
More
化学进展 DOI: 10.7536/PC120744 前一篇   后一篇

• 综述与评论 •

金属-有机骨架复合材料

付艳艳, 严秀平*   

  1. 药物化学生物学国家重点实验室 南开大学化学学院分析科学研究中心 天津 300071
  • 收稿日期:2012-07-01 修回日期:2012-09-01 出版日期:2013-02-24 发布日期:2012-12-28
  • 通讯作者: 严秀平 E-mail:xpyan@nankai.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20935001,21077057)和天津市自然科学基金项目(No. 10JCZDJC16300)资助

Metal-Organic Framework Composites

Fu Yanyan, Yan Xiuping*   

  1. State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
  • Received:2012-07-01 Revised:2012-09-01 Online:2013-02-24 Published:2012-12-28

金属-有机骨架(metal-organic frameworks,MOFs)是一种新型的有机-无机杂化材料,因具有易于制备、比表面积大、孔隙度高、结构多样性及孔道表面可修饰等特点而广泛应用于气体存储、催化、传感、分离以及生物医学等领域。然而,由于MOFs机械强度低,固体呈粉末状等缺陷,使其在某些领域中的应用受到一定限制。由基体和增强体组成的MOFs复合材料因具有原组成材料的综合性能而成为融合MOFs优点并弥补其缺陷的一种新型材料。本文综述近年来MOFs复合材料的研究进展,与MOFs复合的基体或增强体包括聚合物整体、微球、纤维、金属、磁性纳米粒子、氧化石墨、碳纳米管、量子点、光子晶体以及MOFs,并对其今后的发展进行了展望。

Metal-organic frameworks (MOFs), a new class of organic-inorganic hybrids, have attracted tremendous attention and intriguing potential applications in gas storage, catalysis, sensing, separation and biomedical research because of their large surface area, high adsorption affinity, diverse structures and pore topologies, accessible functionalization of tunnels. However, the low mechanical stability and fine powder of MOFs obtained from traditional MOFs synthesis reactions (e.g. solvothermal methods) are not necessarily the best configuration for the applications outlined above. As a developing research area, metal-organic framework composites (MOF composites) can overcome the drawbacks of MOFs and give improved properties. MOF composites, composed by continuous phase (or matrix) and dispersed phase (or enhancesome), combine the excellent properties of MOFs and balance the shortcomings. In this review, recent advances in MOF composites are highlighted. The continuous phase or dispersed phase combined with MOFs include polymer monoliths, beads, fibers, metal, magnetic nanoparticles (MNPs), graphite oxide (GO), carbon nanotubes (CNTs), quantum dots (QDs), photonic crystals (PCs) and MOFs. MOF composed polymer monoliths, beads and fibers are hybrid materials with the advantages of high mechanical stability, high second surface area, simple and low-cost preparation. Combination of MNPs with MOFs has a great potential application in preparation and separation due to the high speed and compatibility of magnetic separation. Composites derived from MOFs with GO or CNTs give new properties, such as electrical conductivity. The combination of luminescent QDs and the controlled porosity of MOFs can provide molecular sensors at a molecular level. Hybrids of MOFs and MOFs offer heterogeneous structures containing bimodal pore networks. Besides, an outlook for future development in the filed of MOF composites is given. Contents
1 Introduction
2 Classification of metal-organic framework composites
2.1 Metal-organic framework@polymer
2.2 Metal-organic framework@bead
2.3 Metal-organic framework@fiber
2.4 Metal-organic framework@metal
2.5 Metal-organic framework@magnetic nanopar-ticles
2.6 Metal-organic framework@SiO2/Al2O3
2.7 Metal-organic framework@graphite oxide
2.8 Metal-organic framework@carbon nanotube
2.9 Metal-organic framework@quantum dot
2.10 Metal-organic framework@photonic crystal
2.11 Metal-organic framework@metal-organic fram-ework
3 Conclusion and outlook

中图分类号: 

()

[1] Ma S, Zhou H C. Chem. Commun., 2010, 44-53
[2] Suh M P, Park H J, Prasad T K, Lim D W. Chem. Rev., 2012, 112: 782-835
[3] Yoon M, Srirambalaji R, Kim K. Chem. Rev., 2012, 112: 1196-1231
[4] Li J R, Sculley J, Zhou H C. Chem. Rev., 2012, 112: 869-932
[5] Cui Y, Yue Y, Qian G, Chen B. Chem. Rev., 2012, 112: 1126-1162
[6] Horcajada P, Gref R, Baati T, Allan P K, Maurin G, Couvreur P, F閞ey G, Morris R E, Serre C. Chem. Rev., 2012, 112: 1232-1268
[7] Della Rocca J, Liu D, Lin W. Acc. Chem. Res., 2011, 44: 957-968
[8] Li Z, Zhu G, Lu G, Qiu S, Yao X. J. Am. Chem. Soc., 2010, 132: 1490-1491
[9] Stock N, Biswas S. Chem. Rev., 2012, 112: 933-969
[10] Bradshaw D, Garai A, Huo J. Chem. Soc. Rev., 2012, 41: 2344-2381
[11] Schwab M G, Senkovska I, Rose M, Koch M, Pahnke J, Jonschker G, Kaskel S. Adv. Eng. Mater., 2008, 10: 1151-1155
[12] K黶gens P, Zgaverdea A, Fritz H G, Siegle S, Kaskel S. J. Am. Ceram. Soc., 2010, 93: 2476-2479
[13] Ramos-Fernandez E V, Garcia-Domingos M, Juan Alcañiz J, Gascon J, Kapteijn F. Appl. Catal. A Gen., 2011, 391: 261-267
[14] O'Neill L D, Zhang H, Bradshaw D. J. Mater. Chem., 2010, 20: 5720-5726
[15] Lee H J, Cho W, Oh M. Chem. Commun., 2012, 221-223
[16] Ameloot R, Liekens A, Alaerts L, Maes M, Galarneau A, Coq B, Desmet G, Sels B F, Denayer J F M, de Vos D E. Eur. J. Inorg. Chem., 2010, 3735-3738
[17] K黶gens P, Siegle S, Kaskel S. Adv. Eng. Mater., 2009, 11: 93-95
[18] Rose M, Böhringer B, Jolly M, Fischer R, Kaskel S. Adv. Eng. Mater., 2011, 13: 356-360
[19] Ostermann R, Cravillon J, Weidmann C, Wiebcke M, Smarsly B M. Chem. Commun., 2011, 442-444
[20] Meilikhov M, Yusenko K, Schollmeyer E, Mayer C, Buschmann H J, Fischer R A. Dalton Trans., 2011, 40: 4838-4841
[21] Gu X, Lu Z H, Jiang H L, Akita T, Xu Q. J. Am. Chem. Soc., 2011, 133: 11822-11825
[22] Zhao Y, Zhang J, Song J, Li J, Liu J, Wu T, Zhang P, Han B. Green Chem., 2011, 13: 2078-2082
[23] Hermes S, Schröter M K, Schmid R, Khodeir L, Muhler M, Tissler A, Fischer R W, Fischer R A. Angew. Chem. Int. Ed., 2005, 44: 6237-6241
[24] Mulfort K L, Farha O K, Stern C L, Sarjeant A A, Hupp J T. J. Am. Chem. Soc., 2009, 131: 3866-3868
[25] Jiang H L, Lin Q P, Akita T, Liu B, Ohashi H, Oji H, Honma T, Takei T, Haruta M, Xu Q. Chem. Eur. J., 2011, 17: 78-81
[26] Lohe M R, Gedrich K, Freudenberg T, Kockrick E, Dellmann T, Kaskel S. Chem. Commun., 2011, 3075-3077
[27] Ke F, Yuan Y P, Qiu L G, Shen Y H, Xie A J, Zhu J F, Tian X Y, Zhang L D. J. Mater. Chem., 2011, 21: 3843-3848
[28] Huo S H, Yan X P. Analyst, 2012, 137: 3445-3451
[29] Aguado S, Canivet J, Farrusseng D. Chem. Commun., 2010, 7999-8001
[30] Gorka J, Fulvio P F, Pikus S, Jaroniec M. Chem. Commun., 2010, 6798-6800
[31] Seo Y K, Yoon J W, Lee U H, Hwang Y K, Jun C H, Chang J S. Micropor. Mesopor. Mater., 2012, 155: 75-81
[32] Furtado A M B, Liu J, Wang Y, Levan M D. J. Mater. Chem., 2011, 21: 6698-6706
[33] Petit C, Bandosz T J. Adv. Mater., 2009, 21: 4753-4757
[34] Petit C, Bandosz T J. Adv. Funct. Mater., 2010, 20: 111-118
[35] Petit C, Burress J, Bandosz T J. Carbon, 2011, 49: 563-572
[36] Petit C, Mendoza B, Bandosz T J. Langmuir, 2010, 26: 15302-15309
[37] Petit C, Mendoza B, Bandosz T J. Chem. Phys. Chem., 2010, 11: 3678-3684
[38] Petit C, Mendoza B, O'Donnell D, Bandosz T J. Langmuir, 2011, 27: 10234-10242
[39] Jahan M, Bao Q, Yang J X, Loh K P. J. Am. Chem. Soc., 2010, 132: 14487-14495
[40] Petit C, Bandosz T J. Adv. Funct. Mater., 2011, 21: 2108-2117
[41] Bandosz T J, Petit C. Adsorption, 2011, 17: 5-16
[42] Lee J H, Kang S, Jaworski J, Kwon K Y, Seo M L, Lee J Y, Jung J H. Chem. Eur. J., 2012, 18: 765-769
[43] Jahan M, Bao Q, Loh K P. J. Am. Chem. Soc., 2012, 134: 6707-6713
[44] Yang S J, Choi J Y, Chae H K, Cho J H, Nahm K S, Park C R. Chem. Mater., 2009, 21: 1893-1897
[45] Chen X, Lukaszczuk P, Tripisciano C, R黰meli M H, Srenscek-Nazzal J, Pelech I, Kalenczuk R J, Borowiak-Palen E. Phys. Status Solidi (B), 2010, 247: 2664-2668
[46] Prasanth K P, Rallapalli P, Raj M C, Bajaj H C, Jasra R V. Int. J. Hydrogen. Energ., 2011, 36: 7594-7601
[47] Yang S J, Cho J H, Nahm K S, Park C R. Int. J. Hydrogen. Energ., 2010, 35: 13062-13067
[48] Xiang Z, Hu Z, Cao D, Yang W, Lu J, Han B, Wang W. Angew. Chem. Int. Ed., 2011, 50: 491-494
[49] Buso D, Jasieniak J, Lay M D H, Schiavuta P, Scopece P, Laird J, Amenitsch H, Hill A J, Falcaro P. Small, 2012, 8: 80-88
[50] Xia Y. Adv. Mater., 2001, 13: 369-369
[51] Lu G, Hupp J T. J. Am. Chem. Soc., 2010, 132: 7832-7833
[52] Lu G, Farha O K, Kreno L E, Schoenecker P M, Walton K S, van Duyne R P, Hupp J T. Adv. Mater., 2011, 23: 4449-4452
[53] Wu Y N, Li F, Xu Y, Zhu W, Tao C A, Cui J, Li G. Chem. Commun., 2011, 10094-10096
[54] Hinterholzinger F M, Ranft A, Feckl J M, Ruhle B, Bein T, Lotsch B V. J. Mater. Chem., 2012, 22: 10356-10362
[55] Furukawa S, Hirai K, Nakagawa K, Takashima Y, Matsuda R, Tsuruoka T, Kondo M, Haruki R, Tanaka D, Sakamoto H, Shimomura S, Sakata O, Kitagawa S. Angew. Chem. Int. Ed., 2009, 48: 1766-1770
[56] Furukawa S, Hirai K, Takashima Y, Nakagawa K, Kondo M, Tsuruoka T, Sakata O, Kitagawa S. Chem. Commun., 2009, 5097-5099
[57] Hirai K, Furukawa S, Kondo M, Uehara H, Sakata O, Kitagawa S. Angew. Chem. Int. Ed., 2011, 50: 8057-8061
[58] Koh K, Wong-Foy A G, Matzger A J. Chem. Commun., 2009, 6162-6164
[59] Yoon Y, Jeong H K. Cryst. Growth. Des., 2011, 10: 1283-1288
[60] Shekhah O, Hirai K, Wang H, Uehara H, Kondo M, Diring S, Zacher D, Fischer R A, Sakata O, Kitagawa S, Furukawa S, Woll C. Dalton Trans., 2011, 40: 4954-4958

[1] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[2] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[3] 王杰, 冯亚青, 张宝. MOF-COF框架杂化材料[J]. 化学进展, 2022, 34(6): 1308-1320.
[4] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[5] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[6] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[7] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[8] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[9] 汤波, 王微, 罗爱芹. 新型多孔材料用作色谱手性固定相[J]. 化学进展, 2022, 34(2): 328-341.
[10] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[11] 张天永, 吴畏, 朱剑, 李彬, 姜爽. 基于纳米碳填料可拉伸导电聚合物复合材料的制备[J]. 化学进展, 2021, 33(3): 417-425.
[12] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[13] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[14] 肖晶晶, 王牧, 张伟杰, 赵秀英, 冯岸超, 张立群. 铅卤钙钛矿-聚合物复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1731-1740.
[15] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
阅读次数
全文


摘要

金属-有机骨架复合材料