English
新闻公告
More
化学进展 DOI: 10.7536/PC120832 前一篇   后一篇

• 综述与评论 •

银/卤化银:一类新型等离子体光催化剂

朱明山, 陈鹏磊*, 刘鸣华*   

  1. 中国科学院化学研究所 胶体界面与化学热力学重点实验室 北京分子科学国家实验室 北京 100190
  • 收稿日期:2012-08-01 修回日期:2012-09-01 出版日期:2013-02-24 发布日期:2012-12-28
  • 通讯作者: 陈鹏磊, 刘鸣华 E-mail:chenpl@iccas.ac.cn;liumh@iccas.ac.cn
  • 基金资助:

    国家自然科学基金项目(No.20873159,21021003,91027042)和国家重点基础研究发展计划(973)项目(No. 2011CB932301)资助

Ag/AgX (X=Cl, Br, I): A New Type Plasmonic Photocatalysts

Zhu Mingshan, Chen Penglei*, Liu Minghua*   

  1. Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2012-08-01 Revised:2012-09-01 Online:2013-02-24 Published:2012-12-28

半导体光催化氧化技术在环境保护方面具有突出的优点和很强的潜在应用价值,是当前环境净化处理的前沿研究课题之一。贵金属纳米结构的表面等离子体共振效应使之在可见区能够表现出明显的特征吸收,这为可见光驱动的光催化剂的研究提供了新的实践空间和契机。近年来的研究显示:在太阳光或可见光的驱动下,基于银/卤化银 (Ag/AgX, X=Cl, Br, I) 的复合物对有机污染物的光降解表现出了优良的催化性能,且该类催化剂具有良好的稳定性。随着相关研究的进一步深入和拓宽,积累了丰富的研究成果,形成了一个新的研究方向,也为有机污染物的光降解提供了新的机遇。本文对该类新型表面等离子体光催化剂的工作机制、制备方法、催化活性等方面的研究进展进行了总结和概述。此外,文中还简单论述了该类催化体系在其他前沿领域的研究进展。同时,亦对该方向存在的问题和发展前景做了总结和展望。

Currently, photocatalytic oxidation of organic pollutants under visible light illumination has become one of the most important subjects in the field of photocatalysis. This is owing to its intimate relationship with the environmental issues and energy saving. Generally, due to their surface plasmon resonance (SPR) absorptions, nanostructured noble metals could display distinct absorptions in the visible light region. This practically opens up new opportunities and avenues for the development of visible-light-driven photocatalysts. It has recently been demonstrated that Ag/AgX (X=Cl, Br, I) based plasmonic photocatalysts could display excellent and stable photocatalytic performance for the photodegradation of organic pollutants under sunlight or visible-light irradiations. In the past few years, great progress have been achieved with regard to this kind of new type visible-light-driven plasmonic photocatalysts. In this review, we would like to highlight the recent progress concerning the Ag/AgX based plasmonic photocatalyst. The main content of this review includes: (i) the mechanism of the Ag/AgX based plasmonic photocatalyst; (ii) the fabrication of the Ag/AgX based plasmonic photocatalyst; and (iii) photocatalytic performance of the Ag/AgX based plasmonic photocatalyst. At the end of this review, the prospects and problems of this kind of plasmonic photocatalysts are also addressed briefly. Contents
1 Introduction
2 Mechanism of the Ag/AgX-based plasmonic photocatalysis
3 Methods for synthesis of the Ag/AgX-based nanospecies
3.1 Methods for synthesis of the AgX species
3.2 Methods for synthesis of the Ag/AgX species
4 Photocatalytic performances of the Ag/AgX-based plasmonic photocatalysts
4.1 Hybridized with inorganic semiconductors
4.2 Hybridized with graphene species
4.3 Hybridized with other materials
4.4 Morphology dependent photocatalytic performance of the Ag/AgX-based plasmonic photocatalysts
4.5 Others
5 Others applications
6 Conclusion and outlook

中图分类号: 

()

[1] Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Chem. Rev., 1995, 95: 69-96
[2] Chen C, Ma W, Zhao J. Chem. Soc. Rev., 2010, 39: 4206-4219
[3] Linsebigler A L, Lu G, Yates J T Jr. Chem. Rev., 1995, 95: 735-758
[4] Carp O, Huisman C L, Reller A. Prog. Solid State Chem., 2009, 32: 33-177
[5] Chen X, Mao S S. Chem. Rev., 2007, 107: 2891-2959
[6] Zhang J, Wu Y, Xing M, Leghari S A K, Sajjad S. Energy Environ. Sci., 2010, 3: 715-726
[7] Fujishima A, Honda K. Nature, 1972, 238: 37-38
[8] 王兆慧(Wang Z H), 马万红(Ma W H), 陈春城(Chen C C), 籍宏伟(Ji H W), 赵进才(Zhao J C). 中国科学: 化学(Scientia Sinica Chimica), 2011, 41: 1286-1297
[9] 程萍(Cheng P), 顾明元(Gu M Y), 金燕苹(Jin Y P). 化学进展(Prog. Chem. ), 2005, 17(1): 8-14
[10] 唐玉朝(Tang Y C), 胡春(Hu C), 王怡中(Wang Y Z), 张海平(Zhang H P), 黄显怀(Huang X H). 化学进展(Prog. Chem. ), 2005, 17(2): 225-232
[11] 盛国栋(Sheng G D), 李家星(Li J X), 王所伟(Wang S W), 王祥科(Wang X K). 化学进展(Prog. Chem. ), 2009, 21(12): 2492-2504
[12] 李二军(Li E J), 陈浪(Chen L), 章强(Zhang Q), 李文华(Li W H), 尹双凤(Yin S F). 化学进展(Prog. Chem. ), 2010, 22(12): 2282-2289
[13] 张莉平(Zhang L P), 袁实(Yuan S), 胡峰(Hu F), 常晓峰(Chang X F). 化学进展(Prog. Chem. ), 2005, 17(2): 225-232
[14] 徐晨洪(Xu C H), 韩优(Han Y), 迟名扬(Chi M Y). 化学进展(Prog. Chem. ), 2010, 22(12): 2290-2297
[15] Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T. J. Am. Chem. Soc., 2008, 130: 1676-1680
[16] Chen X, Zhu H, Zhao J, Zheng Z, Gao X. Angew. Chem. Int. Ed., 2008, 47: 5353-5356
[17] Ide Y, Matsuoka M, Ogawa M. J. Am. Chem. Soc., 2010, 132: 16762-16764
[18] Wen B, Ma J H, Chen C C, Ma W H, Zhu H Y, Zhao J C. Science China Chemistry, 2011, 54: 887-897
[19] Linic S, Christopher P, Ingram D B. Nat. Mater., 2011, 10: 911-921
[20] Wang P, Huang B, Dai Y, Whangbo M H. Phys. Chem. Chem. Phys., 2012, 14: 9813-9825
[21] Zhou X, Liu G, Yu J, Fan W. J. Mater. Chem., 2012, 22: 21337-21354
[22] Watanabe K, Menzel D, Nilius N, Freund H J. Chem. Rev., 2006, 106: 4301-4320
[23] Rycenga M, Cobley C M, Zeng J, Li W, Moran C H, Zhang Q, Qin D, Xia Y. Chem. Rev., 2011, 111: 3669-3712
[24] 刘惠玉(Liu H Y), 陈东(Chen D), 高继宁(Gao J N), 唐芳琼(Tang F Q), 任湘菱(Ren X L). 化学进展(Prog. Chem. ), 2006, 18: 879-896
[25] Garcia M A. J. Phys. D Appl. Phys., 2011, 44: art. no. 283001
[26] 王朋(Wang P). 山东大学博士论文(Doctoral Dissertation of Shandong University), 2010
[27] Wang P, Huang B, Qin X, Zhang X, Dai Y, Wei J, Whangbo M H. Angew. Chem. Int. Ed., 2008, 47: 7931-7933
[28] Wang P, Huang B, Zhang X, Qin X, Jin H, Dai Y, Wang Z, Wei J, Zhan J, Wang S, Wang J, Whangbo M H. Chem. Eur. J., 2009, 15: 1821-1824
[29] Wang D, Duan Y, Luo Q, Li X, Bao L. Desalination, 2011, 270: 174-180
[30] Jiang J, Zhang L. Chem. Eur. J., 2011, 17: 3710-3717
[31] Kuai L, Geng B, Chen X, Zhao Y, Luo Y. Langmuir, 2010, 26(24): 18723-18727
[32] Hu C, Peng T, Hu X, Nie Y, Zhou X, Qu J, He H. J. Am. Chem. Soc., 2010, 132: 857-862
[33] Zhou X, Hu C, Hu X, Peng T, Qu J. J. Phys. Chem. C, 2010, 114: 2746-2750
[34] Tang Y, Subramaniam V P, Lau T H, Lai Y, Gong D, Kanhere P D, Cheng Y H, Chen Z, Dong Z. Appl. Catal. B: Environ., 2011, 106: 577-585
[35] Wang P, Huang B, Lou Z, Zhang X, Qin X, Dai Y, Zheng Z, Wang X. Chem. Eur. J., 2010, 16: 538-544
[36] Wang P, Huang B, Qin X, Zhang X, Dai Y, Whangbo M H. Inorg. Chem., 2009, 48: 10697-10702
[37] Wang X, Li S, Ma Y, Yu H, Yu J. J. Phys. Chem. C, 2011, 115: 14648-14655
[38] Cheng H, Huang B, Wang P, Wang Z, Lou Z, Wang J, Qin X, Zhang X, Dai Y. Chem. Commun., 2011, 7054-7056
[39] Hu X, Hu C, Peng T, Zhou X, Qu J. Environ. Sci. Technol., 2010, 44: 7058-7062
[40] Yu J, Dai G, Huang B. J. Phys. Chem. C, 2009, 113: 16394-16401
[41] Zhou J, Cheng Y, Yu J. J. Photochem. Photobiol. A: Chem., 2011, 223: 82-87
[42] Guo J, Ma B, Yin A, Fan K, Dai W. Appl. Catal. B Environ., 2011, 101: 580-586
[43] Gu S, Li B, Zhao C, Xu Y, Qian X, Chen G. J. Alloys Compd., 2011, 509: 5677-5682
[44] Zhang H, Fan X, Quan X, Chen S, Yu H. Environ. Sci. Technol., 2011, 45: 5731-5736
[45] Sun S, Chang X, Dong L, Zhang Y, Li Z, Qiu Y. J. Solid State Chem., 2011, 184: 2190-2195
[46] Ma B, Guo J, Zou L, Dai W, Fan K. Chin. J. Chem., 2011, 29: 857-859
[47] Wen Y, Ding H. Chin. J. Catal., 2011, 32: 36-45
[48] 王恩华(Wang E H), 刘素文(Liu S W), 李堂刚(Li T G), 宋灵君(Song L J). 无机化学学报(Chinese J. Inorg. Chem.), 2011, 27:537-541
[49] 聂龙辉(Nie L H), 胡瑶(Hu Y), 张旺喜(Zhang W X). 物理化学学报(Acta Physico-Chimica Sinica), 2012, 28: 154-160
[50] Cushing B L, Kolesnichenko V L, O’Connor C J. Chem. Rev., 2004, 104: 3893-3946
[51] Shchukin D G, Sukhorukov G B. Adv. Mater., 2004, 16: 671-682
[52] Qiu Y, Chen P, Liu M. J. Am. Chem. Soc., 2010, 132 (28): 9644-9652
[53] Zhu M, Chen P, Liu M. ACS Nano, 2011, 5: 4529-4536
[54] Zhu M, Chen P, Liu M. J. Mater. Chem., 2011, 21: 16413-16419
[55] Zhu M, Chen P, Liu M. Langmuir, 2012, 28: 3385-3390
[56] Kim J, Cote L J, Kim F, Yuan W, Shull K R, Huang J. J. Am. Chem. Soc., 2010, 132: 8180-8186
[57] An C, Wang R, Wang S, Zhang X. J. Mater. Chem., 2011, 21: 11532-11536
[58] An C, Peng S, Sun Y. Adv. Mater., 2010, 22: 2570-2574
[59] Peng S, Sun Y. J. Mater. Chem., 2011, 21: 11644-11650
[60] Xiong W, Zhao Q, Li X, Zhang D. Catal. Comm., 2011, 16: 229-233
[61] Li S, Qin G, Pei W, Zuo L. Rare Metals, 2011, 30: 157-160
[62] Choi M, Shin K H, Jang J. J. Colloid Interf. Sci., 2010, 341: 83-87
[63] Hu C, Lan Y, Qu J, Hu X, Wang A. J. Phys. Chem. B, 2006, 110: 4066-4072
[64] Zhang L, Wong K H, Chen Z, Yu J C, Zhao J, Hu C, Chan C Y, Wong P K. Appl. Catal. A: Gen., 2009, 363: 221-229
[65] Zhang Y, Tang Z R, Fu X, Xu Y J. Appl. Catal. B: Environ., 2011, 106:445-452
[66] Elahifard M R, Gholami M R. Environ. Prog. Sustainable Energy, 2012, 31: 371-378
[67] Demazeau G. J. Mater. Chem., 1999, 9: 15-18
[68] Zhu Y, Mei T, Wang Y, Qian Y. J. Mater. Chem., 2011, 21: 11457-11463
[69] Xu H, Li H, Xia J, Yin S, Luo Z, Liu L, Xu L. ACS Appl. Mater. Inter., 2011, 3: 22-29
[70] Xu Y, Xu H, Li H, Xia J, Liu C, Liu L. J. Alloys Comp., 2011, 509: 3286-3292
[71] Lou Z, Huang B, Qin X, Zhang X, Wang Z, Zheng Z, Cheng H, Wang P, Dai Y. CrystEngComm, 2011, 13: 1789-1793
[72] Lou Z, Huang B, Wang P, Wang Z, Qin X, Zhang X, Cheng H, Zheng Z, Dai Y. Dalton Trans., 2011, 4104-4110
[73] Han L, Wang P, Zhu C, Zhai Y, Dong S. Nanoscale, 2011, 3: 2931-2935
[74] Bi Y, Ye J. Chem. Commun., 2009, 6551-6553
[75] Bi Y, Ye J. Chem. Eur. J., 2010, 16: 10327 -10331
[76] Zhu M, Chen P, Liu M. J. Mater. Chem., 2012, 22: 21487-21494
[77] Lei J, Wang W, Song M, Dong B, Li Z, Wang C, Li L. React. Funct. Polym., 2011, 71: 1071-1076
[78] Sun Y. J. Phys. Chem. C, 2010, 114: 2127-2133
[79] Li Y, Ding Y. J. Phys. Chem. C, 2010, 114: 3175-3179
[80] Wiley B, Sun Y, Xia Y. Acc. Chem. Res., 2007, 40: 1067-1076
[81] Sun Y. Nanoscale, 2010, 2: 1626-1642
[82] Zhou Z, Long M, Cai W, Cai J. J. Mol. Catal. A: Chem., 2012, 353/354: 22-28
[83] Xiang Q, Yu J, Jaroniec M. Chem. Soc. Rev., 2012, 41: 782-796
[84] Lü K, Zhao G, Wang X. Chin. Sci. Bull., 2012, 57: 1223-1234
[85] An C, Ming X, Wang J, Wang S. J. Mater. Chem., 2012, 22: 5171-5176
[86] Li G, Wong K H, Zhang X, Hu C, Yu J C, Chan R C Y, Wong P K. Chemosphere, 2009, 76: 1185-1191
[87] Tang Y, Jiang Z, Deng J, Gong D, Lai Y, Tay H T, Joo I T K, Lau T H, Dong Z, Chen Z. ACS Appl. Mater. Interfaces, 2012, 4: 438-446
[88] Burda C, Chen X, Narayanan R, El-Sayed M A. Chem. Rev., 2005, 105: 1025-1102
[89] Cozzoli P D, Pellegrino T, Manna L. Chem. Soc. Rev., 2006, 35: 1195-1208
[90] Xia Y, Xiong Y, Lim B, Skrabalak S E. Angew. Chem. Int. Ed., 2009, 48: 60-103
[91] Wang H, Lang X, Gao J, Liu W, Wu D, Wu Y, Guo L, Li J. Chem. Eur. J., 2012, 18: 4620- 4626
[92] Wang P, Huang B, Zhang Q, Zhang X, Qin X, Dai Y, Zhan J, Yu J, Liu H, Lou Z. Chem. Eur. J., 2010, 16: 10042 -10047
[93] Wang P, Huang B, Zhang X, Qin X, Dai Y, Wang Z, Lou Z. ChemCatChem, 2011, 3: 360 -364
[94] Seo J H, Jeon W I, Dembereldorj U, Lee S Y, Joo S W. J. Hazard. Mater., 2011, 198: 347-355
[95] Hou Y, Li X, Zhao Q, Chen G, Raston C L. Environ. Sci. Technol., 2012, 46: 4042-4050
[96] Zhang L S, Wong K H, Yip H Y, Hu C, Yu J C, Chan C Y, Wong P K. Environ. Sci. Technol., 2010, 44: 1392-1398
[97] Ghosh S, Saraswathi A, Indi S S, Hoti S L, Vasan H N. Langmuir, 2012, 28: 8550-8561
[98] An C, Wang J, Jiang W, Zhang M, Ming X, Wang S, Zhang Q. Nanoscale, 2012, 4: 5646-5650
[99] An C, Wang J, Qin C, Jiang W, Wang S, Li Y, Zhang Q. J. Mater. Chem., 2012, 22: 13153-13158
[100] Zhang X, Li J, Lu X, Tang C, Lu G. J. Colloid Interface Sci., 2012, 377: 277-283
[101] Lou Z, Huang B, Qin X, Zhang X, Cheng H, Liu Y, Wang S, Wang J, Dai Y. Chem. Commun., 2012, 3488-3490
[102] Zhu M, Li Z, Du Y, Mou Z, Yang P. ChemCatChem, 2012, 4: 112-117
[103] Warren S C, Thimsen E. Energy Environ. Sci., 2012, 5: 5133-5146

[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[4] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[5] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[6] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[7] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[8] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[9] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[10] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[11] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[12] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[13] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
[14] 郭俊兰, 梁英华, 王欢, 刘利, 崔文权. 光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114.
[15] 毕洪飞, 刘劲松, 吴正颖, 索赫, 吕学良, 付云龙. 硫化铟锌的改性合成及光催化特性[J]. 化学进展, 2021, 33(12): 2334-2347.