English
新闻公告
More
化学进展 2011, Vol. 23 Issue (5): 852-859 前一篇   后一篇

• 综述与评论 •

核壳结构:燃料电池中实现低铂电催化剂的最佳途径

刘宾, 廖世军, 梁振兴   

  1. 华南理工大学化学与化工学院 广州 510641
  • 收稿日期:2010-08-01 修回日期:2010-10-01 出版日期:2011-05-24 发布日期:2011-05-04
  • 基金资助:

    国家自然科学基金项目(No.21003052)和华南理工大学中央高校基本科研业务费项目资助

Core-Shell Structure: The Best Way to Achieve Low-Pt Fuel Cell Electrocatalysts

Liu Bin, Liao Shijun, Liang Zhenxing   

  1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
  • Received:2010-08-01 Revised:2010-10-01 Online:2011-05-24 Published:2011-05-04

电催化剂是决定低温燃料电池性能、寿命和成本的关键材料之一,核壳结构电催化剂由于其在降低铂载量、提高催化剂活性方面表现出的良好性质,已成为燃料电池领域的研究热点。本文综述了低温燃料电池核壳结构电催化剂的最新研究进展。首先,在概述核壳结构电催化剂总体特征的基础上,详细介绍了核壳结构电催化剂的制备方法,主要包括胶体法、热分解法、置换法、电化学法等,其中胶体法是目前应用最为广泛的一种方法,具有合成过程简单易控等优点;置换法和电化学法则是在最近几年得到了迅速的发展,并有望用于核壳结构电催化剂的批量化生产。然后,分别从二元及其他多元催化剂组成方面阐述了核壳型电催化剂体系的研究进展,核壳结构电催化剂不仅可有效提高贵金属铂的质量比活性,同时,其他金属元素与铂之间存在的相互作用可对电催化剂的活性及稳定性产生十分重要的调变作用。最后,我们对低温燃料电池核壳结构电催化剂的发展趋势作了展望。

Electrocatalyst is one of the key materials in low-temperature fuel cells, which determines the performance, lifetime and cost of the fuel cells. Very recently, core-shell structured electrocatalysts have attracted increasing attention due to their unique advantages in reducing Pt loading and improving the electrocatalytic activity. This review summarizes the recent development of the core-shell structured electrocatalysts used for low-temperature fuel cells. On the basis of briefly stating the research direction of fuel cell electrocatalysts, we first present an introduction to the preparation methods for the synthesis of core-shell structured electrocatalysts, including the colloid method, thermal decomposition method, displacement method and electrochemical method. Among these methods, the colloid method is the most facile and controllable method, which has already been widely employed in the synthesis. Displacement method and electrochemical method are the two most promising methods that have been developed in very recent years. Then, the composition of core-shell structured electrocatalysts and their effect on the electrocatalytic activity are discussed in details. The core-shell structure does not only yield a significant increase in specific catalytic activity, but the special interaction between Pt and the other metal components also contributes to the activity and stability of the electrocatalyst. Finally, research directions are suggested to advance the future work in this field.

中图分类号: 

()

[1] 衣宝廉(Yi B L). 燃料电池--高效、环境友好的发电方式(Fuel Cells--Efficient and Environmentally friendly Way to Power generation). 北京:化学工业出版社(Beijing: Chemical Industry Press), 2000. 5-9
[2] Sarapuu A, Kallip S, Kasikov A, Matisen L, Tammeveski K. J. Electroanal. Chem., 2008, 624: 144-150
[3] Borup R, Meyers J, Pivovar B, Kim Y S, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath J E, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K I, Iwashita N. Chem. Rev., 2007, 107: 3904-3951
[4] Liao S J, Holmes K A, Tsaprailis H, Birss V I. J. Am. Chem. Soc., 2006, 128: 3504-3505
[5] Ma L, Zhang H M, Liang Y M, Xu D Y, Ye W, Zhang J L, Yi B L. Catal. Commun., 2007, 8: 921-925
[6] Alex B, Elod L G, Colin W O. J. Power Sources, 2007, 167: 281-287
[7] Wang Z B, Yin G P, Shao Y Y, Yang B Q, Shi P F, Feng P X. J. Power Sources, 2007, 165: 9-15
[8] Baglio V, Arico A S, Stassi A, Urso C, Di B A, Castro L A M, Antonucci V. J. Power Sources, 2006, 159: 900-904
[9] Santiago E I, Varanda L C, Villullas H M. J. Phys. Chem. C, 2007, 111: 3146-3151
[10] Stamenkovic V, Schmidt T J, Ross P N, Markovic N M. J. Phys. Chem. B, 2002, 106: 11970-11979
[11] Yang H, Alonso-Vante N, Leger J M, Lamy C. J. Phys. Chem. B, 2004, 108: 1938-1947
[12] Alayoglu S, Nilekar A U, Mavrikakis M, Eichhorn B. Nature Materials, 2008, 7: 333-338
[13] Alayoglu S, Eichhorn B. J. Am. Chem. Soc., 2008, 130: 17479-17486
[14] Cao L Y, Tong L M, Diao P, Zhu T, Liu Z F. Chem. Mater., 2004, 16: 3239-3245
[15] Wu Y N, Liao S J, Su Y L, Zeng J H, Dang D. J. Power Sources, 2010, 195: 6459-6462
[16] Sobal N S, Ebels U, Mohwald H, Giersig M. J. Phys. Chem. B, 2003, 107: 7351-7354
[17] Do J S, Chen Y T, Lee M H. J. Power Sources, 2007, 172: 623-632
[18] Lee M H, Wang P S, Do J S. J. Solid State Electrochem., 2008, 12: 879-884
[19] Lee M H, Do J S. J. Power Sources, 2009, 188: 353-358
[20] Zeng J H, Yang J, Lee J Y, Zhou W J. J. Phys. Chem. B, 2006, 110: 24606-24611
[21] Yang J H, Zhou W J, Cheng C H, Lee J Y, Liu Z L. ACS Applied Materials Int., 2010, 2: 119-126
[22] Yang J H, Lu L H, Wang H S, Zhang H J. Scripta Mater., 2006, 54: 159-162
[23] Grzegorz W S, Francis P Z. Langmuir, 2007, 23: 10357-10365
[24] Schimizu K, Cheng I F, Wai C M. Electrochem. Commun., 2009, 11: 691-694
[25] Wei Z D, Feng Y C, Li L, Liao M J, Fu Y, Sun C X, Shao Z G, Shen P K. J. Power Sources, 2008, 180: 84-91
[26] Vukmirovic M B, Zhang J, Sasaki K, Nilekar A U, Uribe F, Mavrikakis M, Adzic R R. Electrochim. Acta, 2007, 52: 2257-2263
[27] Wang J X, Inada H, Wu L J, Zhu Y M, Choi Y M, Liu P, Zhou W P, Adzic R R. J. Am. Chem. Soc., 2009, 131: 17298-17302
[28] Zhou W P, Sasaki K, Su D, Zhu Y M, Wang J X, Adzic R R. J. Phys. Chem. C, 2010, 114: 8950-8957
[29] Ghosh T, Vukmirovic M B, Disalvo F J, Adzic R R. J. Am. Chem. Soc., 2010, 132: 906-907
[30] Adzic R R, Zhang J, Sasaki K, Vukmirovic M B, Shao M, Wang J X, Nilekar A U, Mavrikakis M, Valerio J A, Uribe F. Top. Catal., 2007, 46: 249-262
[31] Zhou W P, Yang X F, Vukmirovic M B, Koel B E, Jiao J, Peng G W, Mavrikakis M, Adzic R R. J. Am. Chem. Soc., 2009, 131: 12755-12762
[32] Jin Y D, Shen Y, Dong S J. J. Phys. Chem. B, 2004, 108: 8142-8147
[33] Jiang L H, Hsu A, Chu D, Chen R R. Electrochim. Acta, 2010, 55: 4506-4511
[34] Sasaki K, Wang J X, Naohara H, Marinkovic N, More K, Inada H, Adzic R R. Electrochim. Acta, 2010, 55: 2645-2652
[35] Harpeness R, Gedanken A. Langmuir, 2004, 20: 3431-3434
[36] Mani P, Srivastava R, Strasser P. J. Phys. Chem. C, 2008, 112: 2770-2778
[37] Wang H, Xu C W, Cheng F L, Zhang M, Wang S Y, Jiang S P. Electrochem. Commun., 2008, 10: 1575-1578
[38] Ah C S, Kim S J, Jang D J. J. Phys. Chem. B, 2006, 110: 5486-5489
[39] Lim B, Jiang M J, Camargo P H C, Cho E C, Tao J, Lu X M, Zhu Y M, Xia Y A. Science, 2009, 324: 1302-1305
[40] Adzic R R. J. Am. Chem. Soc., 2005, 127: 12480-12481
[41] Kristian N, Wang X. Electrochem. Commun., 2008, 10: 12-15
[42] Ma Y W, Zhang H M, Zhong H X, Xu T, Jin H, Geng X Y. Catal. Commun., 2010, 11: 434-437
[43] Guo S J, Fang Y X, Dong S J, Wang E. J. Phys. Chem. C, 2007, 111: 17104-17109
[44] Fu X Z, Liang Y, Chen S P, Lin J D, Liao D W. Catal. Commun., 2009, 10: 1893-1897
[45] Kang J Q, Ma W T, Wu J J, Pan M. Catal. Commun., 2009, 10: 1271-1274
[46] Liu Z F, Hu J E, Wang Q, Gaskell K, Frenkel A I, Jackson G S, Eichhorn B. J. Am. Chem. Soc., 2009, 131: 6924-6925
[47] Lee K S, Park I S, Park H Y, Jeon T Y, Sung Y E. Catal. Today, 2009, 146: 20-24
[48] Zhao H B, Li L, Yang J, Zhang Y M. Electrochem. Commun., 2008, 10: 1527-1529
[49] Wu Y N, Liao S J, Liang Z X, Yang L J, Wang R F. J. Power Sources, 2009, 194: 805-810
[50] Zhang W, Wang R, Wang H, Lei Z. Fuel Cells, 2010, 10: 734-749
[51] Wang R F, Li H, Ji S, Wang H, Lei Z Q. Electrochim. Acta, 2010, 55: 1519-1522
[52] Wang W, Wang R F, Ji S, Feng H Q, Wang H, Lei Z Q. J. Power Sources, 2010, 195: 3498-3503
[53] Shao M H, Sasaki K. Marinkovic N S, Zhang L H, Adzic R R. Electrochem. Commun., 2007, 9: 2848-2853
[54] Ramirez-Caballero G E, Ma Y G, Callejas-Tovar R, Balbuena P B. Phys. Chem. Chem. Phys., 2010, 12: 2209-2218
[55] Wang R F, Li H, Feng H Q, Wang H, Lei Z Q. J. Power Sources, 2010, 195: 1099-1102
[56] Gong K P, Chen W F, Sasaki K, Su D, Vukmirovic M B, Zhou W P, Izzo E, Perez-Acosta C, Hirunsit P, Balbuena P B, Adzic R R. J. Electroanal. Chem., 2010, 649: 232-237
[57] Zeis R, Mathur A, Fritz G, Lee J, Erlebacher J. J. Power Sources, 2007, 165: 65-72

[1] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[2] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[3] 王洪红, 雷文, 李孝建, 黄仲, 贾全利, 张海军. 催化还原降解Cr(Ⅵ)[J]. 化学进展, 2020, 32(12): 1990-2003.
[4] 李振杰, 钟杜, 张洁, 陈金伟, 王刚, 王瑞林. 锂离子电池硅纳米粒子/碳复合材料[J]. 化学进展, 2019, 31(1): 201-209.
[5] 梁茜, 王诚, 雷一杰, 刘亚迪, 赵波, 刘锋. 金属有机框架材料在质子交换膜燃料电池中的潜在应用[J]. 化学进展, 2018, 30(11): 1770-1783.
[6] 康永印, 宋志成, 乔培胜, 杜向鹏, 赵飞. 光致发光胶体量子点研究及应用[J]. 化学进展, 2017, 29(5): 467-475.
[7] 张东杰, 张丛筠, 卢亚, 郝耀武, 刘亚青. 种子生长法制备Au@Ag核壳纳米粒子[J]. 化学进展, 2015, 27(8): 1057-1064.
[8] 陈思远, 董旭, 查刘生. 表面引发原子转移自由基聚合法合成无机/有机核壳复合纳米粒子[J]. 化学进展, 2015, 27(7): 831-840.
[9] 宋肖锴, 周雅静, 李亮. 核壳结构金属-有机骨架的研究[J]. 化学进展, 2014, 26(0203): 424-435.
[10] 李雷, 李彦兴, 姚瑶, 姚良宏, 季伟捷, 区泽棠. 核壳结构纳米材料的创制及在催化化学中的应用[J]. 化学进展, 2013, 25(10): 1681-1690.
[11] 陈立峰, 史静, 张亚红, 唐颐*. 核壳型沸石复合材料和反应器[J]. 化学进展, 2012, 24(07): 1262-1269.
[12] 葛余俊, 赤骋, 伍蓉, 郭霞, 张巧, 杨剑*. 基于金纳米棒的核壳纳米结构及其光学性质研究[J]. 化学进展, 2012, 24(05): 776-783.
[13] 陈维民. 燃料电池纳米催化剂的稳定化[J]. 化学进展, 2012, 24(0203): 246-252.
[14] 李广录, 何涛, 李雪梅. 核壳结构纳米复合材料的制备及应用[J]. 化学进展, 2011, 23(6): 1081-1089.
[15] 林丽娟, 周苇, 郭林. 无机镍纳米复合材料[J]. 化学进展, 2011, 23(11): 2299-2307.