English
新闻公告
More
化学进展 2014, Vol. 26 Issue (0203): 424-435 DOI: 10.7536/PC130832 前一篇   后一篇

• 综述与评论 •

核壳结构金属-有机骨架的研究

宋肖锴*1, 周雅静1, 李亮*2   

  1. 1. 常州出入境检验检疫局 常州 213003;
    2. 上海应用技术学院化学与环境工程学院 上海 201418
  • 收稿日期:2013-08-01 修回日期:2013-10-01 出版日期:2014-02-15 发布日期:2013-12-18
  • 通讯作者: 宋肖锴,e-mail:xksong1982@hotmail.com;李亮,e-mail:lilianglcx@sit.edu.cn E-mail:xksong1982@hotmail.com;lilianglcx@sit.edu.cn
  • 基金资助:

    上海高校青年教师培养计划项目(No. ZZyyy12006)和上海应用技术学院引进人才基金项目(No.YJ-2012-10)资助

Synthesis of Core-Shell Metal-Organic Frameworks

Song Xiaokai*1, Zhou Yajing1, Li Liang*2   

  1. 1. Changzhou Entry-Exit Inspection and Quarantine Bureau, Changzhou 213003, China;
    2. School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
  • Received:2013-08-01 Revised:2013-10-01 Online:2014-02-15 Published:2013-12-18
  • Supported by:

    This work was supported by the Funding Scheme for Training Young Teachers in Shanghai Colleges (No.ZZyyy12006) and the Talented Faculty Funds of Shanghai Institute of Technology (No.YJ-2012-10)

核壳结构(core-shell)金属-有机骨架(metal-organic frameworks,MOFs)是多功能MOFs复合材料中最为典型的一类构型,是由MOFs材料和另一种材料(如MOFs、碳材料、无机化合物、有机聚合物等)组装形成的核壳结构,其中MOFs既可作核,亦可作壳。因结合了核层和壳层两种材料,核壳结构MOFs展现出了优于核层或者壳层的独特性能,例如结构稳定、选择性分离、气体吸附等,为MOFs材料实现工业化应用带来了新的潜力。本文综述了近年来核壳结构MOFs材料的研究进展,介绍了各类构型核壳结构MOFs材料(例如MOF@MOF、MOF@carbon、metal oxide@MOF、polymer@MOF等)的合成方法及应用研究,并对其今后的发展进行了展望。

Core-shell metal-organic frameworks (MOFs) composed of MOFs as core (or shell) and another material, such as MOFs, carbon, inorganic compounds and organic polymers, as shell (or core), are a typical class of multifunctional MOFs composites. Because of the combination of the properties of core and shell materials, core-shell MOFs have better performances, such as increasing framework stability, selective separation and gas sorption, than the core or shell materials. Therefore, core-shell MOFs have high potentials for industrial applications. In this paper, the research progress of core-shell MOFs in recent years is reviewed. Synthesis methods and applications of variously structural core-shell MOFs, such as MOF@MOF, MOF@carbon, metal oxide@MOF, and polymer@MOF are introduced. Besides, the future development of core-shell MOFs is prospected.

Contents
1 Introduction
2 Synthesis methods and applications of variously structural core-shell MOFs
2.1 MOF@MOF
2.2 Core-shell structures of MOFs with carbon
2.3 Core-shell structures of MOFs with inorganic compounds
2.4 Core-shell structures of MOFs with organic polymers
3 Conclusion and outlook

中图分类号: 

()

[1] Long J R, Yaghi O M. Chem. Soc. Rev., 2009, 38: 1213.
[2] Suh M P, Park H J, Prasad T K, Lim D W. Chem. Rev., 2012, 112: 782.
[3] Murray L J, Dinca M, Long J R. Chem. Soc. Rev., 2009, 38: 1294.
[4] Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herm Z R, Bae T H, Long J R. Chem. Rev., 2012, 112: 724.
[5] Férey G, Serre C, Devic T, Maurin G, Jobic H, Llewellyn P L, De Weireld G, Vimont A, Daturi M, Chang J S. Chem. Soc. Rev., 2011, 40: 550.
[6] Li J R, Sculley J, Zhou H C. Chem. Rev., 2012, 112: 869.
[7] Li J R, Kuppler R J, Zhou H C. Chem. Soc. Rev., 2009, 38: 1477.
[8] Yoon M, Srirambalaji R, Kim K. Chem. Rev., 2012, 112: 1196.
[9] Lee J, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Chem. Soc. Rev., 2009, 38: 1450.
[10] Horcajada P, Gref R, Baati T, Allan P K, Maurin G, Couvreur P, Férey G, Morris R E, Serre C. Chem. Rev., 2012, 112: 1232.
[11] Della Rocca J, Liu D, Lin W. Acc. Chem. Res., 2011, 44: 957.
[12] deKrafft K E, Xie Z, Cao G, Tran S, Ma L, Zhou O Z, Lin W. Angew. Chem. Int. Ed., 2009, 48: 9901.
[13] Liu D, Huxford R C, Lin W. Angew. Chem. Int. Ed., 2011, 50: 3696.
[14] Kreno L E, Leong K, Farha O K, Allendorf M, van Duyne R P, Hupp J T. Chem. Rev., 2012, 112: 1105.
[15] Lu Z Z, Zhang R, Li Y Z, Guo Z J, Zheng H G. J. Am. Chem. Soc., 2011, 133: 4172.
[16] Kurmoo M. Chem. Soc. Rev., 2009, 38: 1353.
[17] Shen L, Yang S W, Xiang S, Liu T, Zhao B, Ng M-F, Göettlicher J, Yi J, Li S, Wang L, Ding J, Chen B, Wei S-H, Feng Y P, J. Am. Chem. Soc., 2012, 134: 17286.
[18] Furukawa H, Ko N, Go Y B, Aratani N, Choi S B, Choi E, Yazaydin A Ö, Snurr R Q, O'Keeffe M, Kim J, Yaghi O M. Science, 2010, 329: 424.
[19] Farha O K, Yazaydin A O, Eryazici I, Malliakas C D, Hauser B G, Kanatzidis M G, Nguyen S T, Snurr R Q, Hupp J T. Nat. Chem., 2010, 2: 944.
[20] Farha O K, Eryazici I, Jeong N C, Hauser B G, Wilmer C E, Sarjeant A A, Snurr R Q, Nguyen S T, Yazaydn A Ö, Hupp J T. J. Am. Chem. Soc., 2012, 134: 15016.
[21] Farha O K, Wilmer C E, Eryazici I, Hauser B G, Parilla P A, O'Neill K, Sarjeant A A, Nguyen S T, Snurr R Q, Hupp J T. J. Am. Chem. Soc., 2012, 134: 9860.
[22] Deng H X, Grunder S, Cordova K E, Valente C, Furukawa H, Hmadeh M, Gandara F, Whalley A C, Liu Z, Asahina S, Kazumori H, O'Keeffe M, Terasaki O, Stoddart J F, Yaghi O M. Science, 2012, 336: 1018.
[23] An J, Farha O K, Hupp J T, Pohl E, Yeh J I, Rosi N L. Nat. Commun., 2012, 3: 604.
[24] Song X, Oh M, Lah M S. Inorg. Chem., 2013, 52: 10869.
[25] Feldblyum J I, Liu M, Gidley D W, Matzger A J. J. Am. Chem. Soc., 2011, 133: 18257.
[26] Song X, Zou Y, Liu X, Oh M, Lah M S. New J. Chem., 2010, 34: 2396.
[27] Park K S, Ni Z, Cté A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O'Keeffe M, Yaghi O M. Proc. Nat. Acad. Sci. U. S. A., 2006, 103: 10186.
[28] Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I. Science, 2005, 309: 2040.
[29] Furukawa S, Hirai K, Nakagawa K, Takashima Y, Matsuda R, Tsuruoka T, Kondo M, Haruki R, Tanaka D, Sakamoto K, Shimomura S, Sakata O, Kitagawa S. Angew. Chem. Int. Ed., 2009, 48: 1766.
[30] Furukawa S, Hirai K, Takashima Y, Nakagawa K, Kondo M, Tsuruoka T, Sakata O, Kitagawa S. Chem. Commun., 2009, 5097.
[31] Hirai K, Furukawa S, Kondo M, Uehara H, Sakata O, Kitagawa S. Angew. Chem. Int. Ed., 2011, 50: 8057.
[32] Koh K, Wong-Foy A G, Matzger A J. Chem. Commun., 2009, 6162.
[33] Park T H, Hickman A J, Koh K, Martin S, Wong-Foy A G, Sanford M S, Matzger A J. J. Am. Chem. Soc., 2011, 133: 20138.
[34] Yoo Y, Jeong H K. Cryst. Growth Des., 2010, 10: 1283.
[35] Shekhah O, Hirai K, Wang H, Uehara H, Kondo M, Dinng S, Zacher D, Fischer R A, Sakata O, Kitagawa S, Furukawa S, Wöll C. Dalton Trans., 2011, 40: 4954.
[36] Lee H J, Cho Y J, Cho W, Oh M. ACS Nano, 2013, 7: 491.
[37] Li T, Sullivan J E, Rosi N L. J. Am. Chem. Soc., 2013, 135: 9984.
[38] Cohen S M. Chem. Rev., 2012, 112: 970.
[39] Gadzikwa T, Lu G, Stern C L, Wilson S R, Hupp J T, Nguyen S T. Chem. Commun., 2008, 5493.
[40] Gadzikwa T, Farha O K, Malliakas C D, Kanatzidis M G, Hupp J T, Nguyen S T. J. Am. Chem. Soc., 2009, 131: 13613.
[41] Hirai K, Furukawa S, Kondo M, Meilikhov M, Sakata Y, Sakatad O, Kitagawa S. Chem. Commun., 2012, 48: 6472.
[42] Burnett B J, Barron P M, Hu C, Choe W. J. Am. Chem. Soc., 2011, 133: 9984.
[43] Jeong S, Kim D, Song X, Choi M, Park N, Lah M S. Chem. Mater., 2013, 25: 1047.
[44] Kondo M, Furukawa S, Hirai K, Kitagawa S. Angew. Chem. Int. Ed., 2010, 49: 5327.
[45] Das S, Kim H, Kim K. J. Am. Chem. Soc., 2009, 131: 3814.
[46] Zhang Z, Zhang L, Wojtas L, Nugent P, Eddaoudi M, Zaworotko M J. J. Am. Chem. Soc., 2012, 134: 924.
[47] Dinca M, Long J R. J. Am. Chem. Soc., 2007, 129: 11172.
[48] Song X, Kim T K, Kim H, Kim D, Jeong S, Moon H R, Lah M S. Chem. Mater., 2012, 24: 3065.
[49] Song X, Jeong S, Kim D, Lah M S. CrystEngComm, 2012, 14: 5753.
[50] Kaye S S, Dailly A, Yaghi O M, Long J R. J. Am. Chem. Soc., 2007, 129: 14176.
[51] Jiang H L, Liu B, Lan Y Q, Kuratani K, Akita T, Shioyama H, Zong F, Xu Q. J. Am. Chem. Soc., 2011, 133: 11854.
[52] Hu M, Reboul J, Furukawa S, Torad N L, Ji Q, Srinivasu P, Ariga K, Kitagawa S, Yamauchi Y. J. Am. Chem. Soc., 2012, 134: 2864.
[53] Liu B, Shioyama H, Akita T, Xu Q. J. Am. Chem. Soc., 2008, 130: 5390.
[54] Yang S J, Kim T, Im J H, Kim Y S, Lee K, Jung H, Park C R. Chem. Mater., 2012, 24: 464.
[55] Yang S J, Park C R. Adv. Mater., 2012, 24: 4010.
[56] Jahan M, Bao Q, Yang J X, Loh K P. J. Am. Chem. Soc., 2010, 132: 14487.
[57] Yang S J, Choi J Y, Chae H K, Cho J H, Nahm K S, Park C R. Chem. Mater., 2009, 21: 1893.
[58] Li Y, Yang R T. J. Am. Chem. Soc., 2006, 128: 8136.
[59] Yang S J, Cho J H, Nahm K S, Park C R. Int. J. Hydrogen Energy, 2010, 35: 13062.
[60] Xiang Z, Peng X, Cheng X, Li X, Cao D. J. Phys. Chem. C, 2011, 115: 19864.
[61] Xiang Z, Hu Z, Cao D, Yang W, Lu J, Han B, Wang W. Angew. Chem. Int. Ed., 2011, 50: 491.
[62] Prasanth K P, Rallapalli P, Raj Mj C, Bajaj H C, Jasra R V. Int. J. Hydrogen Energy, 2011, 36: 7594.
[63] Lohe M R, Gedrich K, Freudenberg T, Kockrick E, Dellmannc T, Kaskel S. Chem. Commun., 2011, 47: 3075.
[64] Ke F, Yuan Y P, Qiu L G, Shen Y H, Xie A J, Zhu J F, Tian X Y, Zhang L D. J. Mater. Chem., 2011, 21: 3843.
[65] Ke F, Qiu L G, Yuan Y P, Jiang X, Zhu J F. J. Mater. Chem., 2012, 22: 9497.
[66] Kuo C H, Tang Y, Chou L Y, Sneed B T, Brodsky C N, Zhao Z, Tsung C K. J. Am. Chem. Soc., 2012, 134: 14345.
[67] Zhan W W, Kuang Q, Zhou J Z, Kong X J, Xie Z X, Zheng L S. J. Am. Chem. Soc., 2013, 135: 1926.
[68] Tanaka S, Kida K, Nagaoka T, Ota T, Miyake Y. Chem. Commun., 2013, 49: 7884.
[69] Gao C, Zhang Q, Lu Z, Yin Y. J. Am. Chem. Soc., 2013, 135: 19706.
[70] Moon H R, Lim D W, Suh M P. Chem. Soc. Rev., 2013, 42: 1807.
[71] He L, Liu Y, Liu J, Xiong Y, Zheng J, Liu Y, Tang Z. Angew. Chem. Int. Ed., 2013, 52: 3741.
[72] Khaletskaya K, Reboul J, Meilikhov M, Nakahama M, Diring S, Tsujimoto Mo, Isoda S, Kim F, Kamei K, Fischer R A, Kitagawa S, Furukawa S. J. Am. Chem. Soc., 2013, 135: 10998.
[73] Lu G, Li S, Guo Z, Farha O K, Hauser B G, Qi X, Wang Y, Wang X, Han S, Liu X, DuChene J S, Zhang H, Zhang Q, Chen X, Ma J, Loo S C J, Wei W D, Yang Y, Hupp J T. Nat. Chem., 2012, 4: 310.
[74] Taylor K M L, Rocca J D, Xie Z, Tran S, Lin W. J. Am. Chem. Soc., 2009, 131: 14261.
[75] Jo C, Lee H J, Oh M. Adv. Mater., 2011, 23: 1716.
[76] Qian K, Fang G, Wang S. Chem. Commun., 2011, 47: 10118.
[77] Lee H J, Cho W, Oh M. Chem. Commun., 2012, 48: 221.

[1] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[2] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[3] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[4] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[5] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[6] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[7] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[8] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[9] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[10] 胡豪, 何云鹏, 杨水金. 多酸@金属-有机骨架材料的制备及其在废水处理中的应用[J]. 化学进展, 2021, 33(6): 1026-1034.
[11] 杨宇州, 李政, 黄艳凤, 巩继贤, 乔长晟, 张健飞. MOF基水凝胶材料的制备及其应用[J]. 化学进展, 2021, 33(5): 726-739.
[12] 张天永, 吴畏, 朱剑, 李彬, 姜爽. 基于纳米碳填料可拉伸导电聚合物复合材料的制备[J]. 化学进展, 2021, 33(3): 417-425.
[13] 衣晓虹, 王崇臣. 铁基金属-有机骨架及其复合物高级氧化降解水中新兴有机污染物[J]. 化学进展, 2021, 33(3): 471-489.
[14] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[15] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
阅读次数
全文


摘要

核壳结构金属-有机骨架的研究