English
新闻公告
More
化学进展 2013, Vol. 25 Issue (10): 1681-1690 DOI: 10.7536/PC121251 前一篇   后一篇

• 综述与评论 •

核壳结构纳米材料的创制及在催化化学中的应用

李雷1,2, 李彦兴1,3, 姚瑶1, 姚良宏1,3, 季伟捷1, 区泽棠3   

  1. 1. 南京大学化学化工学院 介观化学教育部重点实验室 南京210093;
    2. 吴江出入境检验检疫局 吴江 215200;
    3. 香港浸会大学化学系 香港九龙塘
  • 收稿日期:2012-12-01 修回日期:2013-04-01 出版日期:2013-11-12 发布日期:2013-07-18
  • 通讯作者: 季伟捷, 区泽棠 E-mail:jiwj@nju.edu.cn; pctau@hkbu.edu.hk
  • 基金资助:

    国家自然科学基金项目(No.21173118)、 江苏省自然科学基金项目(No.BK2011439)、 教育部博士点基金项目(No.20110091110023)和 RGC-HKSAR(RGC 200107)资助

Progress and Prospective in Fabrication and Application of Core-Shell Structured Nanomaterials in Catalytic Chemistry

Li Lei1,2, Li Yanxing1,3, Yao Yao1, Yao Lianghong1,3, Ji Weijie1, Au Chak-Tong3   

  1. 1. Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China;
    2. Wujiang Inspection and Quarantine Bureau of Entry and Exit, Wujiang 215200, China;
    3. Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
  • Received:2012-12-01 Revised:2013-04-01 Online:2013-11-12 Published:2013-07-18

核壳结构纳米材料因其独特的结构及其多功能性,引起人们的广泛关注,具有广阔的应用前景。本文综述了近年来核壳结构纳米材料的创制,包括金属@金属,金属@氧化物,金属@碳材料,金属@高聚物,金属@分子筛等及其在不同催化过程中的催化行为,强调了特定的组装结构和表面电子性质对催化性能及稳定性的影响。依据具体实例对具有yolk/shell型核壳结构纳米反应器在催化反应中的作用与功能进行了评述。本文最后对核壳结构纳米材料在可控合成以及不同催化过程中的可能应用进行了展望与总结。

Owning to their unique structures and multi-functionalities, the core-shell structured nanomaterials are receiving great attention in recent years, and being widely used in various catalytic processes. The purpose of this review is to highlight the recent achievements in fabrication and application of core-shell nanostructures (i.e., metal core@metal shell, metal core@oxide shell, metal core@carbon shell, metal core@polymer, and metal core@zeolite shell) in catalytic chemistry. The influences of assembled structures and resulting electronic properties on catalytic performance as well as catalyst durability are discussed. In view of the new research findings, the concept of nanoreactor with the yolk/shell structure and its role in catalytic reactions are outlined. At the end of the article, a summary and outlook of these novel materials with respect to controlled synthesis and potential applications are provided.

Contents
1 Introduction
2 Progress in fabrication and application of core-shell structured nanomaterials in catalysis
2.1 Metal core@metal shell nanomaterials
2.2 Metal core@oxide shell nanomaterials
2.3 Metal core@carbon shell nanomaterials
2.4 Metal core@polymer shell nanomaterials
2.5 Metal core@zeolite shell nanomaterials
2.6 Yolk/shell structure nanomaterials

中图分类号: 

()
[1] Bell A T. Science, 2003, 299: 1688—1691
[2] 汪洋(Wang Y), 颜志鹏(Yan Z P), 陈丰秋(Chen F Q), 詹晓力(Zhan X L). 化学进展(Progress in Chemistry), 2008, 20: 1263—1269
[3] Reiss P, Protiere M, Li L. Small, 2009, 5: 154—168
[4] Guerrero-Martínez A, Pérez-Juste J, Liz-Marzán L. Adv. Mater., 2010, 22: 1182—1195
[5] Burns A, Ow H, Wiesner U. Chem. Soc. Rev., 2006, 35: 1028—1042
[6] Chi F, Guo Y N, Liu J, Liu Y, Huo Q. J. Phys. Chem. C, 2010, 114: 2519—2523
[7] Jun Y W, Choi J S, Cheon J. Chem. Commun., 2007, 12: 1203—1214
[8] Zhou S, Varughese B, Eichhorn B, Jackson G, McIlwrath K. Angew. Chem. Int. Ed., 2005, 44: 4539—4543
[9] Alayoglu S, Eichhorn B. J. Am. Chem. Soc., 2008, 130: 17479—17486
[10] Alayoglu S, Nilekar A, Mavrikakis M, Eichhorn. B. Nat. Mater., 2008, 7: 333—338
[11] Bagot P A J, Marquis E A, Smith G D W, Tsang S C E. Nat. Nanotechnol., 2011, 6: 302—307
[12] Zeng J, Yang J, Lee J, Zhou W. J. Phys. Chem. B, 2006, 110: 24606—24611
[13] Huang R, Wen Y H, Zhu Z Z, Sun S G. J. Phys. Chem. C, 2012, 15: 8664—8671
[14] Zhang X, Yan J, Han S, Shioyama H, Xu Q. J. Am. Chem. Soc., 2009, 131: 2778—2779
[15] Chen Y, Yang F, Dai Y, Wang W, Chen S. J. Phys. Chem. C, 2008, 112: 1645—1649
[16] Jun C, Park Y, Yeon Y, Choi J, Lee W, Ko S, Cheon J. Chem. Commun., 2006, 1619—1621
[17] Pachón L, Thathagar M, Hartl F, Rothenberg G. Phys. Chem. Chem. Phys., 2006, 8: 151—157
[18] Massard R, Uzio D, Thomazeau C, Pichon C, Rousset J, Bertolini J. J. Catal., 2007, 245 : 133—143
[19] Sárkány A, Geszti O, Sáfrán G. Appl. Catal. A, 2008, 350: 157—163
[20] Marx S, Baiker A. J. Phys. Chem. C, 2009, 113: 6191—6201
[21] Zhang W, Li L, Du Y, Wang X, Yang P. Catal. Lett., 2009, 127: 429—436
[22] Joo S H, Park J Y, Tsung C K, Yamada Y, Yang P D, Somorjai G A. Nat. Mater., 2009, 8: 126—131
[23] Yu K M K, Yeung C M Y, Thompsett D, Tsang S C. J. Phys. Chem. B, 2003, 107: 4515—4526
[24] Park J, Forman A, Tang W, Cheng J, Hu Y, Lin H, McFarland E. Small, 2008, 4: 1694—1697
[25] Forman A J, Park J N, Tang W, Hu Y S, Stucky G D, McFarland E W. ChemCatChem., 2010, 2: 1318—1324
[26] Takenaka S, Orita Y, Umebayashi H, Matsune H, Kishida M. Appl. Catal. A, 2008, 351: 189—194
[27] Takenaka S, Umebayashi H, Tanabe E, Matsune H, Kishida M. J. Catal., 2007, 245: 392—400
[28] Yeung C M Y, Tsang S C, Catal. Lett., 2009, 128: 349—355
[29] Yeung C M Y, Tsang S C, J. Phys. Chem. C, 2009, 113: 6074—6087
[30] Cargnello M, Wieder N L, Montini T, Gorte R J, Fornasiero P. J. Am. Chem. Soc., 2010, 132: 1402—1409
[31] Zhang J, Li L, Huang X, Li G. J. Mater. Chem., 2012, 22: 10480—10487
[32] Zhang N, Fu X, Xu Y J, J. Mater. Chem., 2011, 21: 8152—8158
[33] Lu J, Fu B, Kung M C, Xiao G, Elam J W, Kung H H, Stair P C. Science, 2012, 335: 1205—1208
[34] Montini T, Condo A, Hickey N, Lovey F, De Rogatis L, Fornasiero P, Graziani M. Appl. Catal. B: Environ., 2007, 73: 84—97
[35] D'addato S, Grillo V, Altieri S, Frabboni S, Rossi F, Valeri S. J. Phys. Chem. C, 2011, 115: 14044—14049
[36] Bian Z, Zhu J, Cao F, Lu Y, Li H. Chem. Commun., 2009, 3789—3791
[37] Nair A S, Pradeep T, MacLaren I, J. Mater. Chem., 2004, 14: 857—862
[38] Oldfield G, Ung T, Mulvaney P. Adv. Mater., 2000, 12: 1519—1522
[39] Deng Y, Qi D, Deng C, Zhang X, Zhao D. J. Am. Chem. Soc., 2008, 130: 28—29
[40] Yang H, Chong Y, Li X, Ge H, Fan W, Wang J. J. Mater. Chem., 2012, 22: 9069—9076
[41] Barmatova M, Ivanchikova I, Kholdeeva O, Shmakov A, Zaikovskii V, Mel'gunov M. Catal. Lett., 2009, 127: 75—82
[42] Ng Y H, Ikeda S, Harada T, Higashida S, Sakata T, Mori H, Matsumura M. Adv. Mater., 2007, 19: 597—601
[43] Ikeda S, Ishino S, Harada T, Okamoto N, Sakata T, Mori H, Kuwabata S, Torimoto T, Matsumura M. Angew. Chem. Int. Ed., 2006, 45: 7063—7066
[44] Ng Y H, Ikeda S, Morita Y, Harada T, Ikeue K, Matsumura M. J. Phys. Chem. C, 2009, 113: 12799—12805
[45] Ng Y H, Ikeda S, Harada T, Sakata T, Mori H, Takaoka A, Matsumura M. Langmuir, 2008, 24: 6307—6312
[46] Harada T, Ikeda S, Ng Y H, Sakata T, Mori H, Matsumura M. Adv. Funct. Mater., 2008, 18: 2190—2196
[47] Song C, Du J, Zhao J, Feng S, Du G, Zhu Z. Chem. Mater., 2009, 21: 1524—1530
[48] Yu G, Sun B, Pei Y, Xie S, Yan S, Qiao M, Fan K, Zhang X, Zong B. J. Am. Chem. Soc., 2010, 132: 935—937
[49] 唐新德 (Tang X D), 张其震 (Zhang Q Z). 化学进展 (Progress in Chemistry), 2003, 15: 129—134
[50] Du Y, Zhang W, Wang X, Yang P. Catal. Lett., 2006, 107: 177—183
[51] Yang P, Zhang W, Du Y, Wang X. J. Mol. Catal. A: Chem., 2006, 260: 4—10
[52] Sun L, Ca D, Cox J. J. Solid. State. Electrochem., 2005, 9: 816—822
[53] Huang W, Kuhn J N, Tsung C K, Zhang Y, Habas S E, Yang P, Somorjai G A. Nano. Lett., 2008, 8: 2027—2034
[54] Toshima N. Macromol. Symp., 2008, 270: 27—39
[55] Xuan S, Wang Y, Yu J, Leung K. Langmuir, 2009, 25: 11835—11843
[56] Vande C R, Alfers A, Meeldijk J, Martinez-Viviente E, Pregosin P, Gebbink R, van Koten G. J. Am. Chem. Soc., 2006, 128: 12700—12713
[57] Graeser M, Pippel E, Greiner A, Wendorff J. Macromolecules, 2007, 40: 6032—6039
[58] Lu Y, Mei Y, Drechsler M, Ballauff M. Angew. Chem. Int. Ed., 2006, 45: 813—816
[59] Mei Y, Lu Y, Polzer F, Ballauff M, Drechsler M. Chem. Mater., 2007, 19: 1062—1069
[60] Lu Y, Mei Y, Ballauff M, Drechsler M. J. Phys. Chem. B, 2006, 110: 3930—3937
[61] Lu Y, Proch S, Schrinner M, Drechsler M, Kempe R, Ballauff M. J. Mater. Chem., 2009, 19: 3955—3961
[62] Zhang J, Zhang W, Wang Y, Zhang M. Adv. Synth. Catal., 2008, 350: 2065—2076
[63] Wen F, Zhang W, Wei G, Wang Y, Zhang J, Zhang M, Shi L. Chem. Mater., 2008, 20: 2144—2150
[64] Zheng P, Zhang W. J. Catal., 2007, 250: 324—330
[65] Wei G, Zhang W, Wen F, Wang Y, Zhang M. J. Phys. Chem. C, 2008, 112: 10827—10832
[66] Miyamoto M, Kamei T, Nishiyama N, Egashira Y, Ueyama K. Adv. Mater., 2005, 17: 1985—1988
[67] Nishiyama N, Miyamoto M, Egashira Y, Ueyama K. Chem. Commun., 2001, 1746—1747
[68] Nishiyama N, Ichioka K, Park D, Egashira Y, Ueyama K, Gora L, Zhu W, Kapteijn F, Moulijns J. Ind. Eng. Chem. Res., 2004, 43: 1211—1215
[69] Bao J, He J, Zhang Y, Yoneyama Y, Tsubaki N. Angew. Chem. Int. Ed., 2008, 47: 353—356
[70] He J, Liu Z, Yoneyama Y, Nishiyama N, Tsubaki N. Chem-Eur. J., 2006, 12: 8296—8304
[71] He J, Yoneyama Y, Xu B, Nishiyama N, Tsubaki N. Langmuir, 2005, 21: 1699—1702
[72] Li X, He J, Meng M, Yoneyama Y, Tsubaki N. J. Catal., 2009, 265: 26—34
[73] Yang G, He J, Yoneyama Y, Tan Y, Han Y, Tsubaki N. Appl. Catal. A, 2007, 329: 99—105
[74] Yang G, He J, Yoneyama Y, Tan Y, Han Y, Vitidsant T, Tsubaki N. Energy. Fuels, 2008, 22: 1463—1468
[75] Yang G, Tan Y, Han Y, Qiu J, Tsubaki N. Catal. Commun., 2008, 9: 2520—2524
[76] Yoneyama Y, He J, Morii Y, Azuma S, Tsubaki N. Catal. Today, 2005, 104: 37—40
[77] Sun B, Yu G, Lin J, Xu K, Pei Y, Yan S, Qiao M, Fan K, Zhang X, Zong B, Catal. Sci. Technol., 2012, 2: 1625—1629
[78] Ren N, Yang Y, Shen J, Zhang Y, Xu H, Gao Z, Tang Y. J. Catal., 2007, 251: 182—188
[79] Ren N, Yang Y, Zhang Y, Wang Q, Tang Y. J. Catal., 2007, 246: 215—222
[80] Khan E A, Hu E P, Lai Z P. Microporous. Mesoporous. Mater., 2009, 118: 210—217
[81] Van V D, Miyamoto M, Nishiyama N, Egashira Y, Ueyama K. J. Catal., 2006, 243: 389—394
[82] 孔德金(Kong D J), 童伟益(Tong W Y), 郑均林(Zheng J L), 刘志城(Liu Z C), 邹薇(Zou W), 祁晓岚(Qi X L), 房鼎业(Fang D Y). 化学通报(Chemistry), 2008, 71: 249—255
[83] Lu Y, Zhao Y, Yu L L, Shi C, Hu M, Xu Y, Wen L, Yu S. Adv. Mater., 2010, 22: 1407—1411
[84] Yuan X, Archer J. Adv. Mater., 2006, 18: 2325—2329
[85] Kim J, Kim H, Lee N, Kim T, Kim H, Yu T, Song I, Moon W, Hyeon T. Angew. Chem. Int. Ed., 2008, 47: 8438—8441
[86] Zhu Y F, Shi J L, Shen W H, Dong X P, Feng J W, Ruan M L, Li Y S. Angew. Chem. Int. Ed., 2005, 44: 5083—5087
[87] Gao J, Liang G, Zhang B, Kuang Y, Zhang X, Xu B. J. Am. Chem. Soc., 2007, 129: 1428—1433
[88] Kamata K, Lu Y, Xia Y N. J. Am. Chem. Soc., 2003, 125: 2384—2385
[89] Wu X, Xu D. J. Am. Chem. Soc., 2009, 131: 2774—2775
[90] Wu S H, Tseng C T, Lin Y S, Lin C H, Hung Y, Mou C Y. J. Mater. Chem., 2011, 21: 789—794
[91] Arnal P, Comotti M, Schüth F, Angew. Chem. Int. Ed., 2006, 45: 8224—8227
[92] Güttel R, Paul M, Ferdi S, Chem. Commun., 2010, 46: 895—897
[93] Huang X, Guo C, Zuo J, Zheng N, Stucky G D. Small, 2009, 5: 361—365
[94] Yin Y D, Rioux R M, Erdonmez C K, Hughes S, Somorjai G A, Alivisatos A P. Science, 2004, 304: 711—714
[95] Sun Y, Wiley B, Li Z Y, Xia Y N. J. Am. Chem. Soc., 2004, 126 : 9399—9406
[96] Park J C, Bang J U, Lee J, Ko C H, Song H. J. Mater. Chem., 2010, 20: 1239—1246
[97] Lee J, Park J C, Bang J U, Song H. Chem. Mater., 2008, 20: 5839—5844
[98] Lee J, Park J C, Song H. Adv. Mater., 2008, 20: 1523—1528
[99] Chen Y, Chen H, Guo L, He Q, Chen F, Zhou J, Feng J, Shi J. ACS Nano, 2010, 4: 529—539
[100] Chen D, Li L, Tang F, Qi S. Adv. Mater., 2009, 21: 3804—3807
[101] Fang X, Chen C, Liu Z, Liu P, Zheng N. Nanoscale, 2011, 3: 1632—1639
[102] Zhang T, Ge J, Hu Y, Zhang Q, Aloni S, Yin Y. Angew. Chem. Int. Ed., 2008, 47: 5806—5811
[103] Li Y X, Liu S Q, Yao L H, Ji W J, Au C T. Catal. Commun., 2010, 11: 368—372
[104] Yao L H, Li Y X, Zhao J, Ji W J, Au C T. Catal. Today, 2010, 158: 401—408
[105] Yao L H, Shi T B, Li Y X, Zhao J, Ji W J, Au C T. Catal. Today, 2011, 164: 112—119
[106] Li Y X, Yao L H, Liu S Q, Zhao J, Ji W J, Au C T. Catal. Today, 2011, 160: 79—86
[107] Li Y X, Yao L H, Song Y Y, Liu S Q, Zhao J, Ji W J, Au C T. Chem. Commun., 2010, 46: 5298—5300
[108] Li L, He S C, Song Y Y, Zhao J, Ji W J, Au C T. J. Catal., 2012, 288: 54—64
[109] Li L, Lu P, Yao Y, Ji W J. Catal. Commun., 2012, 26: 72—77
[110] Li L, Sun B, Fei Z Y, Yao Y, Zhao J, Ji W J, Au C T. ChemCatChem, 2013, DOI:10.1002/cctc.201300537
[111] Park J C, Lee H J, Jung H S, Kim M, Kim H J, Park K H, Song H. ChemCatChem., 2011, 3: 755—760
[112] Kim S H, Yin Y D, Alivisatos A P, Somorjai G A, Yates J T. J. Am. Chem. Soc., 2007, 129: 9510—9513
[1] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[2] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[3] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[4] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[5] 岳长乐, 鲍文静, 梁吉雷, 柳云骐, 孙道峰, 卢玉坤. 多酸基硫化态催化剂的加氢脱硫和电解水析氢应用[J]. 化学进展, 2022, 34(5): 1061-1075.
[6] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[7] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[8] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[9] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[10] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[11] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[12] 程熙萌, 张庆瑞. 功能蛋白纳米材料在环境保护中的应用[J]. 化学进展, 2021, 33(4): 678-688.
[13] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[14] 蒋乔, 徐雪卉, 丁宝全. 纳米材料对生物凝聚态的调控[J]. 化学进展, 2020, 32(8): 1128-1139.
[15] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.