English
新闻公告
More
化学进展 2015, Vol. 27 Issue (8): 1057-1064 DOI: 10.7536/PC150140 前一篇   后一篇

• 综述与评论 •

种子生长法制备Au@Ag核壳纳米粒子

张东杰1, 张丛筠1, 卢亚1, 郝耀武*2, 刘亚青*1   

  1. 1. 中北大学材料科学与工程学院 太原 030051;
    2. 德克萨斯大学阿灵顿分校材料科学与工程系 阿灵顿 76019
  • 收稿日期:2015-01-01 修回日期:2015-04-01 出版日期:2015-08-15 发布日期:2015-04-21
  • 通讯作者: 郝耀武, 刘亚青 E-mail:lyq@nuc.edu.cn;yhao@uta.edu
  • 基金资助:
    山西省国际科技合作项目(No. 2014081006-2)资助

Preparation of Au@Ag Core-Shell Nanoparticles through Seed-Mediated Growth Method

Zhang Dongjie1, Zhang Congyun1, Lu Ya1, Hao Yaowu*2, Liu Yaqing*1   

  1. 1. School of Materials Science and Engineering, North University of China, Taiyuan 030051, China;
    2. Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington 76019, USA
  • Received:2015-01-01 Revised:2015-04-01 Online:2015-08-15 Published:2015-04-21
  • Supported by:
    The work was supported by the International Scientific and Technological Cooperation Projects in Shanxi Province (No. 2014081006?2).
Au@Ag核壳纳米粒子由于具有优异的局部等离子共振性质 (LSPR),近年来引起人们极大的关注,目前,在成像、催化、信息存储、生化传感等领域已经得到了广泛的应用。在制备Au@Ag核壳纳米粒子的方法中,种子生长法的应用最为广泛,因为它可以实现对Ag壳尺寸及形貌的有效控制。本文综述了影响Au@Ag核壳纳米粒子核壳结构尺寸、形貌、Ag壳厚度以及覆盖均匀程度的一些主要因素,包括Au种子的形貌和浓度、AgNO3浓度、封端剂、还原剂以及其他一些影响因素。研究发现,Au@Ag核壳纳米粒子在表面增强拉曼光谱 (SERS) 方面具有广泛的应用前景。
Au@Ag core-shell nanoparticles have received considerable attention for recent years because of the localized surface plasmon resonance (LSPR). At present, Au@Ag core-shell nanoparticles have been widely used in applications related to photonics, catalysis, information storage, chemical/biological sensing. Due to the well controlled size and morphology of Ag shell, seed-mediated growth method has become the most practical approach to synthesize Au@Ag core-shell nanoparticles. This review provides a short summary of some main factors, such as the morphology and concentration of Au seeds, concentration of AgNO3, capping agents, reductants and some other factors, which affect the size, morphology, the thickness and uniform coating of Ag shell during the seed-mediated growth of Au@Ag core-shell nanoparticles. Recent studies have shown that Au@Ag core-shell nanoparticles would benefit the further development of the surface-enhanced Raman scattering (SERS).

Contents
1 Introduction
2 Classification of Au@Ag core-shell nanoparticles
3 Preparation of Au@Ag core-shell nanoparticles by seed-mediated growth method
3.1 Precursors
3.2 Capping agents
3.3 Reductants
3.4 Some other factors
4 Conclusion

中图分类号: 

()
[1] Chaudhuri R G, Paria S. Chem. Rev., 2012, 112: 2373.
[2] Wang A, Peng Q, Li Y D. Chem. Mater., 2011, 23 (13): 3217.
[3] Li Q, Jiang R, Ming T, Fang C H, Wang J F. Nanoscale, 2012, 4: 7070.
[4] Li J, Zheng Y, Zeng J, Xia Y N. Chemistry-A European Journal, 2012, 18(26): 8150.
[5] Zhang K, Xiang Y, Wu X, Feng L L, He W W, Liu J B, Zhou W Y, Xie S S. Langmuir, 2009, 25: 1162.
[6] Yancey D F, Carino E V, Crooks R M. J. Am. Chem. Soc., 2010, 132: 10988.
[7] Corthey G, Giovanetti L J, Ramallo-López J M, Salvarezza R C. ACS Nano, 2010, 4(6): 3413.
[8] Zhang W Q, Goh H Y, Firdoz S, Lu X M. Chem. Eur. J., 2013, 19: 12732.
[9] Hsu C, Huang C W, Hao Y W, Liu F Q. Electrochem. Commun., 2012, 23: 133.
[10] Hsu C, Huang C W, Hao Y W, Liu F Q. Nanoscale Res. Lett., 2013, 8: 113.
[11] Sun L, Li Q H, Tang W J, Di J W, Wu Y. Microchim. Acta, 2014, 181: 1991.
[12] Tsao Y C, Rej S, Chiu C Y, Huang M H. J. Am. Chem. Soc., 2014, 136 (1): 396.
[13] Hao J R, Xiong B, Cheng X D, He Y, Yeung E S. Anal. Chem., 2014, 86: 4663.
[14] Tsuji M, Maeda Y, Hikino S, Kumagae H, Matsunaga M, Tang X L, Matsuo R, Ogino M, Jiang P. Cryst. Growth. Des., 2009, 9: 4700.
[15] Wu Y, Jiang P, Jiang M, Wang W T, Guo C F, Xie S S, Wang Z L. Nanotechnology, 2009, 20: 305602.
[16] Cho E C, Camargo P H C, Xia Y N. Adv. Mater., 2010, 22: 744.
[17] Snchez-Iglesias A, Carbó-Argibay E, Glaria A, Rodríguez-Gonzlez B, Pérez-Juste J, Pastoriza-Santo I, Liz-Marzn L M. Chem. Eur. J., 2010, 16: 5558.
[18] Wu H L, Chen C H, Huang M H. Chem. Mater., 2009, 21 (1): 110.
[19] Li N, Zhao P X, Astruc D. Angew. Chem. Int. Ed., 2014, 53: 1756.
[20] Ma Y Y, Li W Y, Cho E C, Li Z Y, Yu T, Zeng J, Xie Z X, Xia Y N. ACS Nano, 2010, 4(11): 6725.
[21] Gong J X, Zhou F, Li Z Y, Tang Z Y. Langmuir, 2012, 28: 8959.
[22] Hong S, Choi Y, Park S. Chem. Mater., 2011, 23: 5375.
[23] Zhu J, Zhang F, Li J J, Zhao J W. Gold Bull., 2014, 47: 47.
[24] Khlebtsov B N, Khanadeev V A, Tsvetkov M Y, Bagratashvili V N, Khlebtsov N G. J. Phys. Chem. C, 2013, 117: 23162.
[25] Zheng Y Q, Zhong X L, Li Z Y, Xia Y N. Part. Part. Syst. Char., 2014, 31: 266.
[26] Wang Y C, Black K L, Luehmann H, Li W Y, Zhang Y, Cai X, Wan D H, Liu S Y, Li M, Kim P, Li Z Y, Wang L V, Liu Y J, Xia Y N. ACS Nano, 2013, 7 (3): 2068.
[27] Ma Y Y, Zeng J, Li W Y, McKiernan M, Xie Z X, Xia Y N. Adv. Mater., 2010, 22: 1930.
[28] Chung P J, Lyu L M, Huang M H. Chem. Eur. J., 2011, 17: 9746.
[29] Wu H L, Kuo C H, Huang M H. Langmuir, 2010, 26(14): 12307.
[30] Yu K, You G J, Polavarapu L, Xu Q H. J. Phys. Chem. C, 2011, 115: 14000.
[31] Tsuru Y, Nakashima N, Niidome Y. Optics Commun., 2012, 285: 3419.
[32] Tsuji M, Nishio M, Jiang P, Miyamae N, Lima S, Matsumoto K, Ueyama D, Tang X L. Colloids and Surfaces A: Physicochemical Engineering Aspects, 2008, 317: 247.
[33] Tsuji M, Ogino M, Matsunaga M, Miyamae N, Matsuo R, Nishio M, Alam M J. Crystal Growth & Design, 2010, 10: 4085.
[34] Park G, Seo D, Jung J, Ryu S, Song H. J. Phys. Chem. C, 2011, 115: 9417.
[35] Samal A K, Polavarapu L, Rodal C S, Liz L M, Pérez-Juste J, Pastoriza I. Langmuir, 2013, 29: 15076.
[36] Shankar C, Dao A T N, Singh P, Higashimine K, Mott D M, Maenosono S. Nanotechnology, 2012, 23: 245704.
[37] Khlebtsov B, Khanadeev V, Pylaev T, Khlebtsov N. J. Phys. Chem. C, 2011, 115: 6317.
[38] Ko F H, Tai M R, Liu F K, Chang Y C. Sensors and Actuators B, 2015, 211: 283.
[39] Tsuji M, Nakamura N, Ogino M, Ikedo K, Matsunaga M. CrystEngComm, 2012, 14: 7639.
[40] Lu L, Burkey G, Halaciuga I, Goia D V. Journal of Colloid and Interface Science, 2013, 392: 90.
[41] Okuno Y, Nishioka K, Kiya A, Nakashima N, Ishibashi A, Niidome Y. Nanoscale, 2010, 2: 1489.
[42] Banerjee M, Sharma S, Chattopadhyay A, Ghosh S S. Nanoscale, 2011, 3: 5120.
[43] Huo D, He J, Li H, Yu H P, Shi T T, Feng Y H, Zhou Z Y, Hu Y. Colloids and Surfaces B: Biointerfaces, 2014, 117: 29.
[44] Wang H, Liu J, Wu X, Tong Z H, Deng Z X. Nanotechnology, 2013, 24: 205102.
[45] Yang X, Wang Y, Liu Y W, Jiang X. Electrochim. Acta, 2013, 108: 39.
[46] Banerjee M, Dey B, Talukdar J, Kalita M C. Energy, 2014, 69: 695.
[47] Baek S, Park G, Noh J, Cho C, Lee C H, Seo M K, Song H, Lee J Y. ACS Nano, 2014, 8: 3302.
[48] Guo P Z, Sikdar D, Huang X Q, Si K J, Xiong X, Gong S, Yap L W, Premaratne M, Cheng W L. Nanoscale, 2015, 7: 2862.
[49] Contreras C R, Dawson C, Formanek P, Fischer D, Simon F, Janke A, Uhlmann P, Stamm M. Chem. Mater., 2013, 25: 158.
[50] Yang Y, Liu J Y, Fu Z W, Qin D. J. Am. Chem. Soc., 2014, 136: 8153.
[1] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[2] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[3] 杨冬, 高可奕, 杨百勤, 雷蕾, 王丽霞, 薛朝华. 微流控合成体系的装置分类及其用于纳米粒子的制备[J]. 化学进展, 2021, 33(3): 368-379.
[4] 李振杰, 钟杜, 张洁, 陈金伟, 王刚, 王瑞林. 锂离子电池硅纳米粒子/碳复合材料[J]. 化学进展, 2019, 31(1): 201-209.
[5] 刘一寰, 胡欣, 朱宁, 郭凯. 基于微流控技术制备微/纳米粒子材料[J]. 化学进展, 2018, 30(8): 1133-1142.
[6] 张咚咚, 刘敬民, 刘瑶瑶, 党梦, 方国臻, 王硕. 纳米粒子在药物传递中的应用[J]. 化学进展, 2018, 30(12): 1908-1919.
[7] 喻志超, 汤淳, 姚丽, 高庆, 徐祖顺, 杨婷婷. 聚合物基模板制备中空介孔材料[J]. 化学进展, 2018, 30(12): 1899-1907.
[8] 毕洪梅, 韩晓军. 磁应答型药物递送载体的设计与构建[J]. 化学进展, 2018, 30(12): 1920-1929.
[9] 康永印, 宋志成, 乔培胜, 杜向鹏, 赵飞. 光致发光胶体量子点研究及应用[J]. 化学进展, 2017, 29(5): 467-475.
[10] 李平, 董阿力德尔图, 孙梓嘉, 高歌. N-卤胺类高分子与纳米抗菌材料的制备及应用[J]. 化学进展, 2017, 29(2/3): 318-328.
[11] 陈璐扬, 赵瑾, 龙丽霞, 侯信, 原续波*. 肿瘤免疫治疗中的生物医用载体[J]. 化学进展, 2017, 29(10): 1195-1205.
[12] 杜鑫, 赵彩霞, 黄洪伟, 温永强, 张学记. 树枝状多孔二氧化硅纳米粒子的制备及其在先进载体中的应用[J]. 化学进展, 2016, 28(8): 1131-1147.
[13] 郝锐, 张丛筠, 卢亚, 张东杰, 郝耀武, 刘亚青. 氧化石墨烯/金银纳米粒子复合材料的制备及其SERS效应研究[J]. 化学进展, 2016, 28(8): 1186-1195.
[14] 邱健豪, 何明, 贾明民, 姚建峰. 金属有机骨架材料制备双金属或多金属催化材料及其应用[J]. 化学进展, 2016, 28(7): 1016-1028.
[15] 王昀, 冯岸超, 袁金颖. 刺激响应聚合物在金纳米粒子催化体系中的应用[J]. 化学进展, 2016, 28(7): 1054-1061.