English
新闻公告
More
化学进展 2015, Vol. 27 Issue (7): 831-840 DOI: 10.7536/PC150137 前一篇   后一篇

• 综述与评论 •

表面引发原子转移自由基聚合法合成无机/有机核壳复合纳米粒子

陈思远, 董旭, 查刘生*   

  1. 东华大学纤维材料改性国家重点实验室 上海 201620
  • 收稿日期:2015-01-01 修回日期:2015-03-01 出版日期:2015-07-15 发布日期:2015-06-15
  • 通讯作者: 查刘生 E-mail:lszha@dhu.edu.cn

Inorganic/Organic Core-Shell Composite Nanoparticles by Surface-Initiated Atom Transfer Radical Polymerization

Chen Siyuan, Dong Xu, Zha Liusheng*   

  1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
  • Received:2015-01-01 Revised:2015-03-01 Online:2015-07-15 Published:2015-06-15
原子转移自由基聚合(ATRP)是目前为止最具工业化应用前景的活性/可控自由基聚合方法之一,其最大特点是可以得到分子量分布窄、链结构规整的聚合物,而且可聚合的单体种类多,反应条件温和并易控制。表面引发ATRP(SI-ATRP)特别适合于无机材料表面接枝聚合物或无机/有机复合材料的制备,近年来引起了国内外研究者的高度关注。本文首先对SI-ATRP的反应过程与特点做了阐述,然后重点述评了用SI-ATRP法合成以非金属氧化物纳米粒子、金属氧化物纳米粒子、金属纳米粒子或其他无机纳米粒子为核的无机/有机复合纳米粒子的研究进展,最后对未来用SI-ATRP法合成无机/有机复合纳米粒子的发展方向和研究前景进行展望。
Atom transfer radical polymerization (ATRP) is by far one of the most promising living /controlled radical polymerization methods in industrial application. It is able to get the polymers with narrow molecular weight distribution and regular chain structure. Furthermore, many kinds of monomers can be polymerized by ATRP, and its reaction condition is mild and easy to control. Surface-initiated atom transfer radical polymerization (SI-ATRP) is a good method for grafting the polymers with regular structure on the surfaces of inorganic materials or synthesizing inorganic/organic composite materials. In recent years, SI-ATRP technique has attracted much attention from domestic and abroad researchers. In this paper, the reaction process and characteristics of SI-ATRP are elaborated, and then the progress in preparation of inorganic/organic core-shell structured composite nanoparticles based on non-metal oxide nanoparticles, metal oxide nanoparticles, metal nanoparticles, and other inorganic nanoparticle as core by SI-ATRP is highly reviewed. Finally, the outlook on future development of SI-ATRP for synthesizing inorganic/organic composite nanoparticles is presented.

Contents
1 Introduction
2 Reaction process and characteristics of SI-ATRP
3 Grafting polymer on different nanoparticles by SI-ATRP
3.1 Inorganic/organic core-shell structured composite nanoparticles based on non-metal oxide nanoparticle as core
3.2 Inorganic/organic core-shell structured composite nanoparticles based on metal oxide nanoparticle as core
3.3 Inorganic/organic core-shell structured composite nanoparticles based on metal nanoparticle as core
3.4 Inorganic/organic core-shell structured composite nanoparticles based on other inorganic nanoparticle as core
4 Conclusion and outlook

中图分类号: 

()
[1] Thanh N T K, Green L A W. Nano Today, 2010, 5(3): 213.
[2] Auffan M, Rose J, Bottero J Y, Lowry G V, Jolivet J P, Wiesner M R. Nat. Nanotechnol., 2009, 4(10): 634.
[3] Choi J, Hui C M, Schmitt M, Pietrasik J, Margel S, Matyjazsewski K, Bockstaller M R. Langmuir, 2013, 29(21): 6452.
[4] 董旭(Dong X), 刘晓云(Liu X Y), 查刘生(Zha L S). 化学进展(Progress in Chemistry), 2013, 25(12): 2038.
[5] Banerjee S, Paira T K, Mandal T K. Polym. Chem., 2014, 5(14): 4153.
[6] Matyjaszewski K, Miller P J, Shukla N, Immaraporn B, Gelman A, Luokala B B, Siclovan T M, Kickelbick G, Vallant T, Hoffmann H, Pakula T. Macromolecules, 1999, 32(26): 8716.
[7] Chen Y Z, Yuan X Y. Chemical Research in Chinese Universities, 2014, 30(2): 339.
[8] Hui C M, Pietrasik J, Schmitt M, Mahoney C, Choi J, Bockstaller M R, Matyjaszewski K. Chem. Mater., 2014, 26(1): 745.
[9] Bach L G, Islam M R, Vo T S, Kim S K, Lim K T. Journal of Colloid and Interface Science, 2013, 394: 132.
[10] Leone G, Giovanella U, Bertini F, Hoseinkhani S, Porzio W, Ricci G, Botta C, Galeotti F. J. Mater. Chem. C, 2013, 1(40): 6585.
[11] Barbey R, Lavanant L, Paripovic D, Schuewer N, Sugnaux C, Tugulu S, Klok H A. Chem. Rev., 2009, 109(11): 5437.
[12] Pearson R G. Coordination Chemistry Reviews, 1990, 100403.
[13] Choi J, Hui C M, Pietrasik J, Dong H, Matyjaszewski K, Bockstaller M R. Soft Matter, 2012, 8(15): 4072.
[14] Ejaz M, Yamamoto S, Ohno K, Tsujii Y, Fukuda T. Macromolecules, 1998, 31(17): 5934.
[15] Bombalski L, Min K, Dong H, Tang C, Matyjaszewski K. Macromolecules, 2007, 40(21): 7429.
[16] Koylu D, Carter K R. Macromolecules, 2009, 42(22): 8655.
[17] Kruk M, Dufour B, Celer E B, Kowalewski T, Jaroniec M, Matyjaszewski K. Macromolecules, 2008, 41(22): 8584.
[18] Turgman-Cohen S, Genzer J. Macromolecules, 2010, 43(22): 9567.
[19] Tsujii Y, Ohno K, Yamamoto S, Goto A, Fukuda T. Surface-Initiated Polymerization I, 2006, 1971.
[20] Gao X, Feng W, Zhu S P, Sheardown H, Brash J L. Macromol. React. Eng., 2010, 4(3/4): 235.
[21] Pietrasik J, Hui C M, Chaladaj W, Dong H, Choi J, Jurczak J, Bockstaller M R, Matyjaszewski K. Macromol. Rapid Commun., 2011, 32(3): 295.
[22] Tchoul M N, Dalton M, Tan L S, Dong H, Hui C M, Matyjaszewski K, Vaia R A. Polymer, 2012, 53(1): 79.
[23] Pyun J, Jia S J, Kowalewski T, Patterson G D, Matyjaszewski K. Macromolecules, 2003, 36(14): 5094.
[24] Ignatova M, Voccia S, Gilbert B, Markova N, Cossement D, Gouttebaron R, Jerome R, Jerome C. Langmuir, 2006, 22(1): 255.
[25] Xu C, Wu T, Mei Y, Drain C M, Batteas J D, Beers K L. Langmuir, 2005, 21(24): 11136.
[26] Mori H, Seng D C, Zhang M F, Muller A H E. Langmuir, 2002, 18(9): 3682.
[27] Berger S, Synytska A, Ionov L, Eichhorn K J, Stamm M. Macromolecules, 2008, 41(24): 9669.
[28] Dong H C, Zhu M Z, Yoon J A, Gao H F, Jin R C, Matyjaszewski K. J. Am. Chem. Soc., 2008, 130(39): 12852.
[29] Huang X Y, Wirth M J. Anal. Chem., 1997, 69(22): 4577.
[30] Matyjaszewski K, Tsarevsky N V. J. Am. Chem. Soc., 2014, 136(18): 6513.
[31] 刘艳丽(Liu Y L), 刘芳(Liu F), 张小松(Zhang X S). 湖南工程学院学报(Journal of Hunan Inst itute of Engineering), 2009, 19(1): 74.
[32] 刘春华(Liu C H), 范保林(Fan B L), 刘榛(Liu Z). 高分子通报(Polymer Bulletin), 2009, 464.
[33] Valentin J L, Diaz A R, Rueda L I, Hernandez L G. J. Appl. Polym. Sci., 2004, 91(3): 1489.
[34] Mora-Barrantes I, Valentin J L, Rodriguez A, Quijada-Garrido I, Paris R. J. Mater. Chem., 2012, 22(4): 1403.
[35] 唐龙祥(Tang L X), 范保林(Fan B L), 刘春华(Liu C H), 张奎(Zhang K), 王平华(Wang P H). 高分子材料科学与工程(Polymer Materals Science and Engineering), 2011, 27(5): 21.
[36] Hui C M, Dang A, Chen B, Yan J, Konkolewicz D, He H, Ferebee R, Bockstaller M R, Matyjaszewski K. Macromolecules, 2014, 47(16): 5501.
[37] Huang H P, He L. RSC Advances, 2014, 4(25): 13108.
[38] Ohno K, Tabata H, Tsujii Y. Colloid Polym. Sci., 2013, 291(1): 127.
[39] Wu T, Zou G, Hu J M, Liu S Y. Chem. Mater., 2009, 21(16): 3788.
[40] Mu B, Liu P, Tang Z B, Du P C, Dong Y. Nanomed. Nanotechnol. Biol. Med., 2011, 7(6): 789.
[41] Panahian P, Salami-Kalajahi M, Hosseini M S. J. Polym. Res., 2014, 21(6): 455.
[42] Fotiadou S, Karageorgaki C, Chrissopoulou K, Karatasos K, Tanis I, Tragoudaras D, Frick B, Anastasiadis S H. Macromolecules, 2013, 46(7): 2842.
[43] Wang P, Zhou Y N, Luo J S, Luo Z H. Polym. Chem., 2014, 5(3): 882.
[44] Kao J, Thorkelsson K, Bai P, Rancatore B J, Xu T. Chem. Soc. Rev., 2013, 42(7): 2654.
[45] McCarthy J R, Weissleder R. Adv. Drug Delivery Rev., 2008, 60(11): 1241.
[46] 夏烈文(Xia L W),吕宝强(Lv B Q),刘凡(Liu F),刘钟燕(Liu Z Y),李静(Li J),罗军(Luo J). 化学研究与应用(Chemical Research and Application), 2013, 25(5): 736.
[47] Eyiler E, Walters K B. Colloids Surf. A: Physicochemical and Engineering Aspects, 2014, 444: 321.
[48] Shaonan L, Meiqin Z, Changjing C, Zhigang Z. J. Nanopart. Res., 2014, 16(5): 2393.
[49] Liu Y L, Huang Y Y, Liu J Z, Wang W Z, Liu G Q, Zhao R. J. Chromatogr. A, 2012, 1246(2012): 15.
[50] Liu J Z, Wang W Z, Xie Y F, Huang Y Y, Liu Y L, Liu X J, Zhao R, Liu G Q, Chen Y. J. Mater. Chem., 2011, 21(25): 9232.
[51] Smith A M, Duan H, Mohs A M, Nie S. Adv. Drug Delivery Rev., 2008, 60(11): 1226.
[52] Balti I, Barrere A, Gueguen V, Poussard L, Pavon-Djavid G, Meddahi-Pelle A, Rabu P, Smiri L S, Jouini N, Chaubet F. J. Nanopart. Res., 2012, 14(12): 1266.
[53] Nordell P, Nawaz S, Azhdar B, Hillborg H, Gedde U W. J. Appl. Polym. Sci., 2012, 125(2): 975.
[54] Wåhlander M, Nilsson F, Larsson E, Tsai W-C, Hillborg H, Carlmark A, Gedde U W, Malmström E. Polymer, 2014, 55(9): 2125.
[55] Abou El-Nour K M M, Eftaiha A, Al-Warthan A, Ammar R A A. Arabian J. Chem., 2010, 3(3): 135.
[56] Sardar R, Funston A M, Mulvaney P, Murray R W. Langmuir, 2009, 25(24): 13840.
[57] Lee J E, Chung K, Jang Y H, Jang Y J, Kochuveedu S T, Li D, Kim D H. Anal. Chem., 2012, 84(15): 6494.
[58] Li D X, He Q, Cui Y, Wang K W, Zhang X M, Li J B. Chem. Eur. J., 2007, 13(8): 2224.
[59] Strozyk M S, Chanana M, Pastoriza-Santos I, Perez-Juste J, Liz-Marzan L M. Adv. Funct. Mater., 2012, 22(7): 1436.
[60] Huang X, Neretina S, El-Sayed M A. Adv. Mater., 2009, 21(48): 4880.
[61] Wei Q S, Ji J, Shen J C. Macromol. Rapid Commun., 2008, 29(8): 645.
[62] Wei Q S, Zhou W B, Ji J, Shen J C. Nanoscale Res. Lett. Letters, 2009, 4(1): 84.
[63] Chen R X, Maclaughlin S, Botton G, Zhu S P. Polymer, 2009, 50(18): 4293.
[64] Zeltner M, Grass R N, Schaetz A, Bubenhofer S B, Luechinger N A, Stark W J. J. Mater. Chem., 2012, 22(24): 12064.
[65] Yang X W, Zeng Y W, Cai T X, Hu Z X. Appl. Surf. Sci., 2012, 258(19): 7365.
[66] Zhang X H, Chen H C, Ma Y H, Zhao C W, Yang W T. Appl. Surf. Sci., 2013, 277(2013): 121.
[67] Zhu J Y, Guo N N, Zhang Y T, Yu L, Liu J D. J. Membr. Sci., 2014, 465: 91.
[68] Nie C X, Ma L, Xia Y, He C, Deng J, Wang L R, Cheng C, Sun S D, Zhao C S. J. Membr. Sci., 2015, 475: 455.
[69] Yin J, Zhang Y, Zhang Y X. J. Appl. Polym. Sci., 2005, 97(5): 1922.
[70] Liu J H, Feng N, Chang S Q, Kang H L. Appl. Surf. Sci., 2012, 258(16): 6127.
[1] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[2] 李振杰, 钟杜, 张洁, 陈金伟, 王刚, 王瑞林. 锂离子电池硅纳米粒子/碳复合材料[J]. 化学进展, 2019, 31(1): 201-209.
[3] 李智, 唐后亮, 冯岸超, 汤华燊. “活性”/可控自由基聚合制备两性离子聚合物及其应用[J]. 化学进展, 2018, 30(8): 1097-1111.
[4] 康永印, 宋志成, 乔培胜, 杜向鹏, 赵飞. 光致发光胶体量子点研究及应用[J]. 化学进展, 2017, 29(5): 467-475.
[5] 何福喜, 唐刚, 闵晓燕, 胡敏奇, 邵立东, 毕韵梅. N-乙烯基己内酰胺的活性/可控自由基聚合[J]. 化学进展, 2016, 28(2/3): 328-336.
[6] 张东杰, 张丛筠, 卢亚, 郝耀武, 刘亚青. 种子生长法制备Au@Ag核壳纳米粒子[J]. 化学进展, 2015, 27(8): 1057-1064.
[7] 宋肖锴, 周雅静, 李亮. 核壳结构金属-有机骨架的研究[J]. 化学进展, 2014, 26(0203): 424-435.
[8] 李雷, 李彦兴, 姚瑶, 姚良宏, 季伟捷, 区泽棠. 核壳结构纳米材料的创制及在催化化学中的应用[J]. 化学进展, 2013, 25(10): 1681-1690.
[9] 陈立峰, 史静, 张亚红, 唐颐*. 核壳型沸石复合材料和反应器[J]. 化学进展, 2012, 24(07): 1262-1269.
[10] 葛余俊, 赤骋, 伍蓉, 郭霞, 张巧, 杨剑*. 基于金纳米棒的核壳纳米结构及其光学性质研究[J]. 化学进展, 2012, 24(05): 776-783.
[11] 李广录, 何涛, 李雪梅. 核壳结构纳米复合材料的制备及应用[J]. 化学进展, 2011, 23(6): 1081-1089.
[12] 刘宾, 廖世军, 梁振兴. 核壳结构:燃料电池中实现低铂电催化剂的最佳途径[J]. 化学进展, 2011, 23(5): 852-859.
[13] 程传杰, 申亮, 付全磊, 龚珊珊. 活性/可控自由基无皂乳液聚合[J]. 化学进展, 2011, 23(4): 791-799.
[14] 林丽娟, 周苇, 郭林. 无机镍纳米复合材料[J]. 化学进展, 2011, 23(11): 2299-2307.
[15] 李强 张丽芬 柏良久 缪洁 程振平 朱秀林. 原子转移自由基聚合的最新研究进展*[J]. 化学进展, 2010, 22(11): 2079-2088.