English
新闻公告
More
化学进展 2020, Vol. 32 Issue (12): 1990-2003 DOI: 10.7536/PC200403 前一篇   后一篇

• 综述 •

催化还原降解Cr(Ⅵ)

王洪红1, 雷文1, 李孝建1, 黄仲1, 贾全利2, 张海军1,**()   

  1. 1 武汉科技大学省部共建耐火材料与冶金国家重点实验室 武汉 430081
    2 郑州大学河南省高温功能材料重点实验室 郑州 450052
  • 收稿日期:2020-04-03 修回日期:2020-07-09 出版日期:2021-10-20 发布日期:2020-10-20
  • 通讯作者: 张海军
  • 作者简介:
    ** Corresponding author e-mail:
  • 基金资助:
    国家自然科学基金面上项目(No. 51872210); 国家自然科学基金面上项目(51672194); 湖北省自然科学基金创新群体项目(No. 2017CFA004); 湖北省教育厅高等学校优秀中青年科技创新团队计划(No. T201602)

Catalytic Reductive Degradation of Cr(Ⅵ)

Honghong Wang1, Wen Lei1, Xiaojian Li1, Zhong Huang1, Quanli Jia2, Haijun Zhang1,**()   

  1. 1 The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
    2 Henan Key Laboratory of High Temperature Functional Ceramics, Zhengzhou University, Zhengzhou 450052, China
  • Received:2020-04-03 Revised:2020-07-09 Online:2021-10-20 Published:2020-10-20
  • Contact: Haijun Zhang
  • Supported by:
    the National Natural Science Foundation of China(No. 51872210); the National Natural Science Foundation of China(51672194); the Key Program of Natural Science Foundation of Hubei Province, China(No. 2017CFA004); and the Program for Innovative Teams of Outstanding Young and Middle-Aged Researchers in the Higher Education Institutions of Hubei Province(No. T201602)

工业化的快速发展导致含有六价铬(Cr(Ⅵ))的废水排放量日益增加,Cr(Ⅵ)的毒性和高流动性造成极大的环境污染问题。将Cr(Ⅵ)还原成低毒性和低流动性三价铬(Cr(Ⅲ))是当前的有效处理方式之一。与传统方法相比,利用太阳光、电和微波等驱动氧化还原反应进行Cr(Ⅵ)降解,无催化剂消耗,还原剂用量少,且不会造成二次污染和有限资源损耗,成为处理Cr(Ⅵ)污染的有效解决方案。基于此,本文综述了光催化剂、电催化剂及微波催化剂等在还原Cr(Ⅵ)领域的应用现状,在总结分析前人研究成果的基础上,对今后Cr(Ⅵ) 催化还原技术的研究方向和重点进行了展望。

With the rapid development of industrialization, the discharge of wastewater containing hexavalent chromium(Cr(Ⅵ)) is increasing day by day. The toxicity and high mobility of Cr(Ⅵ) cause great environmental pollution. Reducing Cr(Ⅵ) to trivalent chromium(Cr(Ⅲ)) with low toxicity and low fluidity is one of the current effective treatment methods. Compared with the traditional methods, the catalytic reduction of Cr(Ⅵ) driven by sunlight, electricity and microwave, has the advantages of no catalyst consumption, less reductant consumption, no secondary pollution and limited resource loss, and has become an effective solution to deal with Cr(Ⅵ) pollution. Based on this, the present paper reviews the application of photocatalyst, electrocatalyst and microwave catalyst for Cr(Ⅵ) reduction. Based on the summary and analysis of previous research results, the research direction and key points of Cr(Ⅵ) catalytic reduction technology in the future are prospected.

Contents

1 Introduction

2 Photocatalyst

2.1 Morphology control

2.2 Surface modification

2.3 Ion doping

2.4 Introduction of defect

2.5 Composite material

3 Electrocatalyst

3.1 Electrochemical catalyst

3.2 Piezoelectric catalyst

4 Photo-electrocatalyst

5 Microwave catalyst

5.1 Microwave enhanced catalyst

5.2 Microwave induced catalyst

6 Conclusion and outlook

()
图1 光催化过程的机理示意图[51]
Fig.1 Schematic illustration of mechanism of a photocatalytic process[51]
图2 TiO 2纳米结构: (a) P25纳米颗粒[57];(b) 纳米片[58];(c) 纳米线[53];(d) 纳米花[60]
Fig.2 TiO 2 nanostructures: (a) P25 nanoparticles[57];(b) nanosheets[58];(c) nanowires[53];(d) nanoflowers[60]
图3 TiO 2-Au/Pt光催化还原Cr(Ⅵ)示意图[32]
Fig.3 Photocatalytic reduction of Cr(Ⅵ) by TiO 2-Au/Pt[32]
图4 (a) Me xS y/MIL-125(Ti)[54]及(b) MIL-53(Fe)/CQDs[65]对Cr(Ⅵ)的光催化还原机理
Fig.4 The photocatalytic reduction mechanism of Cr(VI) by (a) Me xS y/MIL-125(Ti)[54] and(b) MIL-53(Fe)/CQDs[65]
图5 (a)$TiO_{2}-HNO_{3}$[73]和(b) Fe-THWO 3薄膜光催化还原Cr(Ⅵ)示意图[74]
Fig.5 The mechanism of photocatalytic reduction of Cr(Ⅵ) by (a) $TiO_{2}-HNO_{3}$[73] and (b) Fe-THWO3[74]
图6 RP 0.01TiO 2的制备及光催化还原Cr(Ⅵ)的机理示意图[77]
Fig.6 Preparation of RP 0.01TiO 2 and its mechanism of photocatalytic reduction of Cr(Ⅵ)[77]
图7 g-C 3N 4/GO/BiFeO 3异质结光催化体系的能带图[52]
Fig.7 The energy band diagram of the photocatalytic-system of g-C 3N 4/GO/BiFeO 3 heterostructures[52]
图8 C-SO 3H/CN-TiO 2的制备及光催化还原Cr(Ⅵ)的机理示意图[80]
Fig.8 Preparation of C-SO 3H/CN-TiO 2 and its mechanism of photocatalytic reduction of Cr(Ⅵ)[80]
图9 PGAs电催化还原Cr(Ⅵ)及氧化BPA的机理[21]
Fig.9 Mechanism of electrocatalytic reduction of Cr(Ⅵ) and oxidation of BPA by PGAs[21]
图10 MFC中FeS@rGO修饰的阴极还原Cr(Ⅵ)的机理[18]
Fig.10 Mechanism of Cr(Ⅵ) reduction at FeS@rGO decorated cathode in MFC[18]
图11 Au/BiVO 4压电催化去除Cr(Ⅵ)和4-CP的机理[83]
Fig.11 Mechanism of piezo-catalytic removal of Cr(Ⅵ) and 4-CP by Au/BiVO4[83]
图12 Ni foam@ZnO@ZnFe-LDH光电催化去除Cr(Ⅵ)和酸性红1[89].
Fig.12 The photoelectrocatalytic removal of Cr(Ⅵ) and acid red 1 by Ni foam@ZnO@ZnFe-LDH[89]
图13 MW/MoS 2-MnFe 2O 4体系中Cr(Ⅵ)的还原机理[22]
Fig.13 Mechanism of Cr(Ⅵ) reduction in MW/MoS 2-MnFe 2O 4 system[22]
图14 MW/Fe 3O 4@PANI体系中Cr(Ⅵ)的还原机理[19]
Fig.14 Mechanism of Cr(Ⅵ) reduction in MW/Fe 3O 4@PANI system[19]
[1]
Tu B Y , Wen R T , Wang K Q , Cheng Y L , Deng Y Q , Cao W , Zhang K H , Tao H S . Journal of Colloid and Interface Science, 2020, 560: 649.
[2]
Chowdhury A , Kumari S , Khan A A , Hussain S . Journal of Hazardous Materials, 2020, 385: 121602.
[3]
Ou B , Wang J X , Wu Y , Zhao S , Wang Z . Chemical Engineering Journal, 2020, 380: 122600.
[4]
Saha B , Orvig C . Coordination Chemistry Reviews, 2010, 254( 23): 2959.
[5]
Chen L F , Zhang J , Zhu Y X , Zhang Y . Food Chemistry, 2018, 244: 378.
[6]
Zhitkovich A. Chemical Research in Toxicology, 2011, 24: 1617.
[7]
Alahmad W , Varanusupakul P , Kaneta T , Varanusupakul P . Analytica Chimica Acta, 2019, 1085: 98.
[8]
Zhang W F , Zhang P X , Liu F , Liu W Z , Zhang J , Lin Z . Chemical Engineering Journal, 2019, 371: 565.
[9]
Hausladen D , Fendorf S . Environmental Science & Technology, 2017, 51( 4): 2058.
[10]
穆毅( Mu Y ). 华中师范大学博士论文(Doctoral Dissertation of Central China Normal University), 2018.
[11]
Liu W , Jin L D , Xu J , Liu J , Li Y Y , Zhou P P , Wang C C , Dahlgren R A , Wang X D . Chemical Engineering Journal, 2019, 359: 564.
[12]
Chuang S M , Ya V , Feng C L , Lee S J , Choo K H , Li C W . Separation and Purification Technology, 2018, 191: 167.
[13]
Chi Z X , Hao L , Dong H , Yu H , Liu H K , Wang Z , Yu H B . Chemical Engineering Journal, 2020, 382: 122789.
[14]
Tan H , Wang C , Li H , Peng D H , Zeng C T , Xu H . Chemosphere, 2020, 242: 125251.
[15]
Wang Y X , Rao L , Wang P F , Shi Z Y , Zhang L X . Applied Catalysis B, 2020, 262: 118308.
[16]
Testa J J , Grela M A , Litter M I . Langmuir, 2001, 17( 12): 3515.
[17]
Gao D W , Wang L , Wang Q Y , Qi Z M , Jia Y , Wang C X . Spectrochimica Acta Part A, 2020, 229: 117936.
[18]
Ali J , Wang L , Waseem H , Djellabi R , Oladoja N A , Pan G . Chemical Engineering Journal, 2020, 384: 123335.
[19]
Zhu C Q , Liu F Q , Song L , Jiang H , Li A M . Environmental Science, 2018, 5: 487.
[20]
Kar P , Maji T K , Sarkar P K . Journal of Materials Chemistry A, 2018, 6( 8): 3674.
[21]
Zhang Y M , Zhang D D , Zhou L C , Zhao Y L , Chen J , Chen Z , Wang F . Chemical Engineering Journal, 2018, 336: 690.
[22]
Pang Y X , Kong L J , Chen D Y , Yuvaraja G . Applied Surface Science, 2019, 471: 408.
[23]
Bao C Z , Chen M X , Jin X , Hu D W , Huang Q . Journal of Molecular Liquids, 2019, 279: 133.
[24]
GB 8978- 1996, 中华人民共和国污水综合排放标准(Integrated wastewater discharge standard).
[25]
李金城( Li Jincheng ). 低碳世界( Low Carbon World), 2016, 7: 3.
[26]
Zare-Moghadam M , Shamsipur M , Molaabasi F , Hajipour-Verdom B . Talanta, 2020, 209: 120521.
[27]
Beni A , Nagy D , Kapitany S , Posta J . Microchemical Journal, 2019, 150: 104097.
[28]
Hu W L , Zheng F , Hu B . Journal of Hazardous Materials, 2018, 151( 1): 58.
[29]
Catalani S , Fostinelli J , Gilberti M E , Apostoli P . International Journal of Mass Spectrometry, 2015, 387: 31.
[30]
Ferreira T A , Rodríguez J A , Galán-Vidal C A , Castrillejo Y , Barrado E . Talanta, 2018, 183: 172.
[31]
Fujishima A , Honda K . Nature, 1972, 238( 5358): 37.
[32]
Wang W , Lai M , Fang J J , Lu C H . Applied Surface Science, 2018, 439: 430.
[33]
Wang X W , Cao Z Q , Du B , Zhang Y , Zhang R . Composites Part B, 2020, 183: 107685.
[34]
Byzynski G , Melo C A , Volanti D P , Ferrer M . Materials & Design, 2017, 120: 363.
[35]
Xu Z H , Yu Y Q , Fang D , Liang J R , Zhou L X . Materials Chemistry and Physics, 2016, 171: 386.
[36]
Doufar N , Benamira M , Lahmar H , Trari M , Avramova I , Caldes M T . Journal of Photochemistry & Photobiology A, 2020, 386: 112105.
[37]
Yang X Y , Zhang Y M , Wang Y L , Xin C L , Zhang P , Liu D , Mamba B B , Kefeni K K , Kuvarega A T , Gui J Z . Chemical Engineering Journal, 2020, 387: 124100.
[38]
Pan J W , Guan Z J , Yang J J , Li Q Y . Chinese Journal of Catalysis, 2020, 41: 200.
[39]
Mu F H , Cai Q , Hu H , Wang J , Wang Y , Zhou S J , Kong Y . Chemical Engineering Journal, 2020, 384: 123352.
[40]
Zhang Y H , Zhao Y Y , Xu Z L , Su H M , Bian X Y , Zhang S S , Dong X P , Zeng L X , Zeng T , Feng M B , Li L X Y , Sharma V K . Applied Catalysis B, 2020, 262: 118306.
[41]
Li Y X , Fu H F , Wang P , Zhao C , Liu W , Wang C C . Environmental Pollution, 2020, 256: 113417.
[42]
Zhang G P , Chen D Y , Li N J , Xu Q F , Li H , He J H , Lu J M . Applied Catalysis B, 2018, 232: 164.
[43]
Jia J , Sun W J , Zhang Q Q , Zhang X Z , Hu X Y , Liu E Z , Fan J . Applied Catalysis B, 2020, 261: 118249.
[44]
Liang Q W , Ploychompoo S , Chen J D , Zhou T T , Luo H J . Chemical Engineering Journal, 2020, 384: 123256.
[45]
Deng F , Luo Y B , Li H , Xia B H , Luo X B , Luo S L , Dionysioub D D . Journal of Hazardous Materials, 2020, 383: 121127.
[46]
Chahkandi M , Zargazi M . Journal of Hazardous Materials, 2019, 380: 120879.
[47]
Wang U S , Chen C H , Ichihara F , Oshikiri M , Liang J , Li L , Li Y X , Song H , Wang S Y , Zhang T , Huang Y B , Cao R , Ye J H . Applied Catalysis B, 2019, 253: 323.
[48]
Zhu L N , Meng L J , Shi J Q , Li J H , Zhang X S , Feng M B . Journal of Environmental Management, 2019, 232: 964.
[49]
He F , Lu Z Y , Song M S , Liu X L , Tang H , Huo P W , Fan W Q , Dong H J , Wu X Y , Xing G L . Applied Surface Science, 2019, 483: 453.
[50]
Xu J J , Liu C , Niu J F , Zhu Y L , Zang BY , Xie M J , Chen M D . Journal of Alloys and Compounds, 2020, 815: 152492.
[51]
Tong H , Ouyang S X , Bi Y P , Umezawa N , Oshikiri M , Ye J H . Advanced Materials, 2012, 24: 229.
[52]
Hu X J , Wang W X , Xie G Y , Wang H , Tan X F , Jin Q , Zhou D X , Zhao Y L . Chemosphere, 2019, 216: 733.
[53]
Rahma S T , Tan W K , Kawamura G , Matsuda A , Lockman Z . Journal of Alloys and Compounds, 2020, 812: 152904.
[54]
Wang H , Yuan X Z , Wu Y , Chen X H , Leng L J , Zeng G M . RSC Advances, 2015, 5( 410): 32531.
[55]
Yuan R , Yue C L , Qiu J L , Liu F Q , Li A M . Applied Catalysis B, 2019, 251: 229.
[56]
Kusior A , Banas J , Trenczek Z A , Zubrzycka P , Micek I A , Radecka M . Journal of Molecular Structure, 2018, 1157: 327.
[57]
Hidalgo M C , ColÓn G , Nav J A . Journal of Photochemistry and Photobiology A, 2002, 148: 341.
[58]
Lu D Z , Chai W Q , Yang M C , Fang P F , Wu W H , Zhao B , Xiong R Y , Wang H M . Applied Catalysis B, 2016, 190: 44.
[59]
Zulkifli M , Bashirom N , Kian T W , Kawamura G , Matsuda A , Lockman Z . IEEE Transactions on Nanotechnology, 2018, 17( 6): 1106.
[60]
Baloyi J , Seadira T , Raphulu M , Ochieng A . Materials Today, 2015, 2: 3973.
[61]
Li H X , Bian Z F , Zhu J , Huo Y N , Li H , Lu Y F . Journal of the American Chemical Society, 2007, 129( 15): 4538.
[62]
Giannakas A E , Antonopoulou M , Papavasiliou J , Deligiannakis Y , Konstantinou I . Journal of Photochemistry and Photobiology A, 2017, 349: 25.
[63]
Lei X F , Xue X X , Yang H . Applied Surface Science, 2014, 321: 396.
[64]
Geszkemoritz M , Moritz M . Materials Science and Engineering C, 2013, 33( 3): 1008.
[65]
Lin R B , Li S M , Wang J Y , Xu J P , Xu C H , Wang J , Li C X , Li Z Q . Inorganic Chemistry Frontiers, 2018, 5( 12): 3170.
[66]
Chen L X , Xu S F , Li J H . Chemical Society Reviews, 2011, 40( 5): 2922.
[67]
Bayramoglu G , Arica M Y . Journal of Hazardous Materials, 2011, 187( 1): 213.
[68]
Ren Z Q , Kong D L , Wang K Y , Zhang W D . Journal of Materials Chemistry, 2014, 2( 42): 17952.
[69]
Zheng Y M , Liu Y Y , Guo X L , Chen Z T , Zhang W J , Wang Y X , Tang X , Zhang Y , Zhao Y H . Journal of Materials Science & Technology, 2020, 41: 117.
[70]
Akika F Z , Benamira M , Lahmar H , Trari M , Avramova I , Suzer S . Surfaces and Interfaces, 2020, 18: 100406.
[71]
Coronado J M , Fresno F , Hernández-Alonso M D , Portela R . Green Energy and Technology, Springer London , 2013. 269. DOI: 10. 1007/978- 1-4471-5061-9.
[72]
Zhang J H , Fu D , Wang S Q , Hao R L , Xie Y X . Journal of Industrial and Engineering Chemistry, 2019, 80: 23.
[73]
Zhang Y C , Yang M , Zhang G S , Dionysiou D D . Applied Catalysis B, 2013, 142: 249.
[74]
Feng M C , Liu Y N , Zhao Z Y , Huang H W , Peng Z J . Materials Research Bulletin, 2019, 109: 168.
[75]
Bai S , Zhang N , Gao C , Xiong Y J . Nano Energy, 2018, 53: 296.
[76]
Qiang T T , Xia Y J . Journal of Alloys and Compounds, in press , 2020,

doi: DOI: 10.1016/j.jallcom.2020.156155    
[77]
Bai X , Jia J , Du Y Y , Hu X Y , Li J L , Liu E Z , Fan J . Applied Surface Science, 2020, 503: 144298.
[78]
Jin Z , Zhang Y X , Meng F L , Jia Y , Luo T , Yu X Y , Wang J , Liu J H , Huang X J . Journal of Hazardous Materials, 2014, 276: 400.
[79]
Misra M , Chowdhury S R , Singh N . Journal of Alloys and Compounds, 2020, 824: 153861.
[80]
Huang Z A , Li K X , Yan L S , Guo H Q , Luo S L . Applied Catalysis A, 2019, 575: 142.
[81]
Sun M , Zhang G , Qin Y H , Cao M J , Liu Y , Li J H , Qu J H , Liu H J . Environmental Science & Technology, 2015, 49( 15): 9289.
[82]
Ali J , Sohail A , Wang L , Haider M R , Mulk S H , Pan G . Energies, 2018, 11( 17): 1822.
[83]
Wei Y , Zhang Y W , Geng W , Su H R , Long M C . Applied Catalysis B, 2019, 259: 118084.
[84]
Wang Y F , Zhao D , Ji H W , Liu G L , Chen C C . Journal of Physical Chemistry C, 2010, 114( 41): 17728.
[85]
Feng Y W , Ling L L , Wang Y X , Xu Z M , Cao F L , Li H X , Bian Z F . Nano Energy, 2017, 40: 481.
[86]
Lianos P. Applied Catalysis B, 2017, 210: 235.
[87]
Meng X C , Zhang Z S , Li X G . Journal of Photochemistry and Photobiology C, 2015, 24: 83.
[88]
Daghrir R , Drogui P , Robert D . Journal of Photochemistry and Photobiology A-Chemistry, 2012, 238: 41.
[89]
Fei W H , Song Y , Li N J , Chen D Y , Xu Q F , Li H , He J H , Lu J M . Solar Energy, 2019, 188: 593.
[90]
Wang P P , Dong F Q , Liu M X , He H C , Huo T T , Zhou L , Zhang W . Environmental Science and Pollution Research, 2018, 25( 21): 1.
[91]
Wang K K , He H Z , Li D W , Li Y M , Li J , Li W Z . Journal of Photochemistry & Photobiology A, 2018, 367: 438.
[92]
Wu S , Yu H T , Lu N , Quan X , Chen S . Separation and Purification Technology, 2017, 175: 454.
[93]
Zhang Y , Wang Q , Lu J N , Wang Q , Cong Y Q . Chemosphere, 2016, 162: 55.
[94]
Wei R , Wang P , Zhang G S , Wang N N , Zheng T . Chemical Engineering Journal, 2020, 382: 122781.
[95]
Mishra R R , Sharma A K . Composites Part A-Applied Science and Manufacturing, 2016, 81: 78.
[96]
Chen W M , Luo Y F , Ran G , Li Q B . Chemical Engineering Journal, 2020, 382: 122803.
[97]
Li S , Zhang G S , Zhang W , Zheng H S , Zhu W Y , Sun N , Zheng Y J , Wang P . Chemical Engineering Journal, 2017, 326: 756.
[98]
Chen J , Xue S , Song Y , Shen M , Zhang Z , Yuan T , Tian F , Dionysiou D D . Journal of Hazardous Materials, 2016, 310: 226.
[99]
Horikoshi S , Serpone N . Catalysis Today, 2014, 224: 225.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[3] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[4] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[5] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[6] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[7] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[8] 赵苏艳, 刘畅, 徐浩, 杨晓博. 二维共价有机框架光催化剂[J]. 化学进展, 2020, 32(2/3): 274-285.
[9] 王晓晗, 刘彩霞, 宋春风, 马德刚, 李振国, 刘庆岭. 金属有机骨架材料在氨低温催化还原氮氧化物反应中的应用[J]. 化学进展, 2020, 32(12): 1917-1929.
[10] 封啸, 任颜卫, 江焕峰. 金属-有机框架材料在光催化二氧化碳还原中的应用[J]. 化学进展, 2020, 32(11): 1697-1709.
[11] 杨萍, 刘敏节, 张昊, 郭雯婷, 吕朝阳, 刘迪. 硝基芳烃与醇还原胺化:催化剂和催化机制[J]. 化学进展, 2020, 32(1): 72-83.
[12] 朱红林, 李文英, 黎挺挺, Michael Baitinger, Juri Grin, 郑岳青. CO2电还原用氮掺杂碳基过渡金属单原子催化剂[J]. 化学进展, 2019, 31(7): 939-953.
[13] 刘迪, 刘骞, 王永刚, 朱永法. Bi2SiO5半导体光催化剂[J]. 化学进展, 2018, 30(6): 703-709.
[14] 梁茜, 王诚, 雷一杰, 刘亚迪, 赵波, 刘锋. 金属有机框架材料在质子交换膜燃料电池中的潜在应用[J]. 化学进展, 2018, 30(11): 1770-1783.
[15] 张霞, 樊静. 碳材料修饰铋系光催化剂及其应用[J]. 化学进展, 2016, 28(4): 438-449.
阅读次数
全文


摘要

催化还原降解Cr(Ⅵ)