中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (2/3): 475-490 DOI: 10.7536/PC180732 Previous Articles   

Azido Energetic Plasticizers for Gun and Rocket Propellants

Baodong Zhao, Fulei Gao, Yinglei Wang**(), Yajing Liu, Bin Chen, Yongfei Pan   

  1. Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
  • Received: Online: Published:
  • Contact: Yinglei Wang
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21173163); National Natural Science Foundation of China(21875185)
Richhtml ( 30 ) PDF ( 875 ) Cited
Export

EndNote

Ris

BibTeX

With the characteristics of superior thermal stability, lower glass transition temperature, insensitivity and better compatibility with binders, azido plasticizers have vast application prospect in the gun and rocket propellants requiring low vulnerability and low characteristic signal. From the aspects of synthesis, characterization, property and application, recent research progress on azido plasticizers is reviewed in this paper. Then, the existing problems in the research of azido plasticizers are sorted, and some potential development directions on the structure design, synthesis, preparation process, characterization and application are pointed out. This review is expected to benefit the researchers on the synthesis, composition application and property characterization of energetic materials.

Fig. 1 Structures and abbreviations of representative azido plasticizers
Fig. 2 Synthetic route for TMETA [24]
Fig. 3 Synthetic routes for plasticizers BDPF and DAEF [26, 27]
Fig. 4 Structures of plasticizers BDAPs [28]
Table 1 Properties of plasticizers BDAPs[28]
Table 2 Plasticizing performance of BDAPs on binders GAP and GAP Polyurethane[28]
Fig. 5 Synthetic route for plasticizer TAA [29]
Table 3 Properties of plasticizers AcBAMP, ProBAMP, ButBAMP and DEGBAA [30]
Fig. 6 Synthetic route for plasticizers BAMPs [30]
Fig. 7 Structures of plasticizers BAAEM and BAAEG[31, 32]
Fig. 8 Synthetic route for plasticizers [G-1]-(N3)6 and [G-1]-(N3)8 [33]
Fig. 9 Structures of plasticizers DAEs [34]
Table 4 Properties of plasticizers DAEs[34]
Fig. 10 Structures of plasticizers AEs [35]
Table 5 Plasticizing performance of plasticizers AEs on GAP and PolyBAMO[35]
Fig. 11 Synthetic route for NMPA [36]
Fig. 12 Synthetic route for DAENP [38]
Fig. 13 Synthetic route for DAMNP and ENPEA [41, 42]
Fig. 14 Synthetic route for plasticizer DPTB [44]
Fig. 15 Synthetic route for compound DABAMDB [46]
Fig. 16 Synthetic route for DADNH and BAADNH [49, 50]
Fig. 17 Synthetic route for DIANP and PNAN [51~54, 58, 61]
Fig. 18 Synthetic route for DANP and DATH from Urotropine [64, 69]
Fig. 19 Synthetic route for plasticizer DANP from urea [65]
Fig. 20 Synthetic route for AENAs [70]
Fig. 21 Synthetic route for plasticizer ADFE [71]
Fig. 22 Synthetic route for plasticizer DADFAH [75]
Fig. 23 Synthetic route for GAPA-1 and GAPA-2 [76]
Fig. 24 Synthetic route for AATGAP [77]
Fig. 25 Synthetic route for GAPA-n [78]
Fig. 26 Synthetic route for TNB-GAP[79]
Fig. 27 Synthetic route for PHPGN, PAPGN and PMPGN [80]
Table 6 Comparison of the properties of representative azido plasticizers [24, 28, 30, 34, 38, 58, 75]
[1]
Schulze M C, Chavez D E .J. Energ. Mater., 2016,34:129.
[2]
Ma M, Shen Y, Kwon Y, Chung C, Kim J S . Propell. Explos. Pyrot., 2016,41:746.
[3]
Yang J, Wang F, Zhang J, Wang G, Gong X . J. Mol. Model., 2013,19:5367. https://www.ncbi.nlm.nih.gov/pubmed/24162066

doi: 10.1007/s00894-013-2014-6 pmid: 24162066
[4]
Kumari D, Balakshe R, Banerjee S, Singh H . Rev. J. Chem., 2012,2:240.
[5]
Straessler N, Lee M . J. Energ. Mater., 2017,35:1. https://www.ncbi.nlm.nih.gov/pubmed/28029487

doi: 10.1016/j.ajem.2016.10.034 pmid: 28029487
[6]
Lotmentsev Y M, Kondakova N N, Bakeshko A V, Kozeev A M, Sheremetev A B . Chem. Heterocycl. Compd., 2017,53:740.
[7]
Gribanov P S, Topchiy M A, Fedyanin I V, Asachenko A F, Nechaev M S, Pleshakov D V . Propell. Explos. Pyrot., 2017,42:1014.
[8]
姬月萍(Ji Y P), 李普瑞(Li P R), 汪伟(Wang W), 兰英(Lan Y), 丁峰(Ding F) . 火炸药学报 (Chinese Journal of Explosives and Propellans), 2005,28(4):47.
[9]
Li X, Chen S, Zhang G, Yu Z, Li J, Chen M, Ma X, Xiang K, Jin S, Chen Y . Mater. Express, 2017,7:216.
[10]
王静刚(Wang J G), 李俊贤(Li J X), 张玉清(Zhang Y Q) . 化学推进剂与高分子材料 (Chemical Propellants and Polymeric Materials), 2008,6(3):10.
[11]
曹星星(Cao X X), 李欢(Li H), 潘仁明(Pan R M) . 兵器装备工程学报 (Journal of Sichuan Ordnance), 2017,38(11):182.
[12]
Ma Y, Liu Y, Yu T, Lai W, Ge Z, Jiang Z . Propell. Explos. Pyrot., 2018,43:170.
[13]
Badgujar D M, Talawar M B, Zarko V E, Mahulikar P P . Combust. Explo. Shock, 2017,53:371.
[14]
Maksimowski P, Kasztankiewicz A B, Kopacz W . Propell. Explos. Pyrot., 2017,42:1020.
[15]
Zhang X, Kim J S, Kwon Y . J. Nanosci. Nanotechnol., 2017,17:7344.
[16]
Dong Q, Li Y, Wu F, Li H, Liu X, Huang C . Propell. Explos. Pyrot., 2017,42:1143.
[17]
Sonawane S H, Banerjee S, Sider A K, Talawar M B, Khan M A S . New J. Chem., 2017,41:7886.
[18]
Yang J, Gong X, Wang G . Comput. Mater. Sci., 2015,110:71.
[19]
罗运军(Luo Y J), 葛震(Ge Z . 精细化工 (Fine Chemicals), 2013,30(04):374.
[20]
Landsem E, Jensen T L, Hansen F K, Unneberg E, Kristensen T E . Propell. Explos. Pyrot., 2012,37:581.
[21]
罗运军(Luo Y J), 葛震(Ge Z . 火炸药学报 (Chinese Journal of Explosives and Propellans), 2011,34(2):1.
[22]
Mohan Y M, Raju K M . Int. J. Polym. Anal. Char., 2004,9:289.
[23]
Yang J, Gong X, Wang G . Can. J. Chem., 2015,93:690.
[24]
姬月萍(Ji Y P), 汪营磊(Wang Y L), 刘卫孝(Liu W X), 陈斌(Chen B) . 含能材料 (Chinese Journal of Energetic Materials), 2011,19(4):388.
[25]
Rindone R R, Huang D S . US 5220039, 1993.
[26]
姬月萍(Ji Y P), 汪伟(Wang W), 丁峰(Ding F), 陈斌(Chen B), 尉涛(Yu T), 刘卫孝(Liu W X) . 火炸药学报 (Chinese Journal of Explosives and Propellants), 2008,31(2):86.
[27]
Clement A, Jacon G, Piteau M . GB 2451221, 2009.
[28]
Baghersad M H, Habibi A, Heydari A . J. Mol. Struct., 2017,1130:447. https://linkinghub.elsevier.com/retrieve/pii/S0022286016309553

doi: 10.1016/j.molstruc.2016.09.028
[29]
刘亚静(Liu Y J), 莫洪昌(Mo H C), 丁峰(Ding F), 张丽洁(Zhang L J), 高福磊(Gao F L), 姬月萍(Ji Y P) . 含能材料 (Chinese Journal of Energetic Materials), 2014,22(6):732.
[30]
Hafner S, Hartdegen V A, Hofmayer M S, Klapötke T M . Propell. Explos. Pyrot., 2016,41:806.
[31]
Kumari D, Yamajala K D B, Singh H, Sanghavi R R, Asthana S N, Raju K, Banerjee S . Propell. Explos. Pyrot., 2013,38:805.
[32]
Kumari D, Singh H, Patil M, Thiel W, Pant C S, Banerjee S . Thermochim. Acta, 2013,562:96.
[33]
Pant C S, Wagh R M, Nair J K, Gore G M, Thekkekara M, Venugopalan S . Propell. Explos. Pyrot., 2007,32:461.
[34]
Kumar S, Kumar A, Yamajala K D B, Pinki Gaur D K, Banerjee S . Cent. Eur. J. Energ. Mater., 2017,14:844.
[35]
Kumari D, Anjitha S G, Pant C S, Patil M, Singh H, Banerjee S . RSC Adv., 2014,4:39924.
[36]
汪营磊(Wang Y L), 姬月萍(Ji Y P), 李普瑞(Li P R), 陈斌(Chen B), 兰英(Lan Y) . 含能材料 (Chinese Journal of Energetic Materials), 2010,18(01):11.
[37]
Yang J, Yan H, Zhang X, Wang G, Gong X . Struct. Chem., 2014,25:931.
[38]
Ghosh K, Athar J, Pawar S, Polke B G, Sikder A K . J. Energ. Mater., 2012,30:107.
[39]
邓蕾(Deng L), 张炜(Zhang W), 鲍桐(Bao T), 周星(Zhou X) . 含能材料 (Chinese Journal of Energetic Materials), 2017,25(01):32.
[40]
Detlef D, Dieter L, Angelika M, Konrad S . Propell. Explos. Pyrot., 1999,24:159.
[41]
刘亚静(Liu Y J), 莫洪昌(Mo H C), 汪营磊(Wang Y L), 卢先明(Lu X M), 姬月萍(Ji Y P) . 含能材料 (Chinese Journal of Energetic Materials), 2015,23(7):712.
[42]
丁峰(Ding F), 刘亚静(Liu Y J), 莫洪昌(Mo H C), 汪营磊(Wang Y L), 卢先明(Lu X M), 姬月萍(Ji Y P) . 爆破器材 (Explosive Materials), 2017,46(1):13.
[43]
Witucki E F, Frankel M B . J. Chem. Eng. Data, 1979,24:247.
[44]
陆婷婷(Lu T T), 张丽洁(Zhang L J), 姬月萍(Ji Y P), 丁峰(Ding F), 刘亚静(Liu Y J), 汪营磊(Wang Y L) . 含能材料 (Chinese Journal of Energetic Materials), 2017,25(6):493.
[45]
Chavez D E, Hiskey M A, Naud D L, Parrish D . Angew. Chem. Int. Ed., 2008,47:8307. https://www.ncbi.nlm.nih.gov/pubmed/18816542

doi: 10.1002/anie.200803648 pmid: 18816542
[46]
王娟(Wang J), 刘大斌(Liu D B), 周新利(Zhou X L) . 爆破器材 (Explosive Materials), 2012,41(4):1.
[47]
郝利峰(Hao L F), 张丽(Zhang L), 何宏军(He H J), 唐时敏(Tang S M), 吴祝骏(Wu Z J), 孙庆锋(Sun Q F) . 化学推进剂与高分子材料 (Chemical Propellants and Polymeric Materials), 2014,12(6):43.
[48]
Wingborg N, Eldsäter C . Propell. Explos. Pyrot., 2002,27:314.
[49]
Ek S, Latypov N, Goede P, Yiewwang L, Raymond Y G Y . J. Energ. Mater., 2012,30:324.
[50]
Ek S, Goede P, Latypov N, Wang L Y, Raymond Y G Y . WO 2009072955, 2009.
[51]
Flanagan J E . US 4085123, 1978.
[52]
Flanagan J E . US 4141910, 1979.
[53]
Simmons R L . US 4450110, 1984.
[54]
Flanagan J E, Wilson E R, Frankel M B . US 5013856, 1991.
[55]
Yang J, Zhang X, Gao P, Gong X, Wang G . RSC Adv., 2014,4:41934.
[56]
Yang J, Gong X, Wang G . Comput. Mater. Sci., 2015,102:1.
[57]
齐晓飞(Qi X F), 闫宁(Yan N), 严启龙(Yan Q L), 李宏岩(Li H Y) . 火炸药学报 (Chinese Journal of Explosives and Propellans), 2017,40(06):101.
[58]
姬月萍(Ji Y P), 兰英(Lan Y), 李普瑞(Li P R), 汪伟(Wang W), 丁峰(Ding F), 刘亚静(Liu Y J) . 火炸药学报 (Chinese Journal of Explosives and Propellans), 2008,31(3):44.
[59]
高福磊(Gao F L), 姬月萍(Ji Y P), 汪伟(Wang W), 刘卫孝(Liu W X), 陈斌(Chen B), 刘亚静(Liu Y J), 丁峰(Ding F) . 火炸药学报 (Chinese Journal of Explosives and Propellans), 2011,34(3):12.
[60]
高福磊(Gao F L), 姬月萍(Ji Y P), 刘卫孝(Liu W X), 丁峰(Ding F), 兰英(Lan Y) . 化学推进剂与高分子材料 (Chemical Propellants and Polymeric Materials), 2014,12(06):79.
[61]
刘卫孝(Liu W X), 姬月萍(Ji Y P), 汪伟(Wang W), 高福磊(Gao F L), 汪营磊(Wang Y L), 陈斌(Chen B), 丁峰(Ding F), 刘亚静(Liu Y J) . 火炸药学报 (Chinese Journal of Explosives and Propellans), 2016,39(02):72.
[62]
Gao F L, Ji Y P, Liu W X, Wang Y L, Chen B, Liu Y J, Ding F . Chin. J. Energ. Mater., 2015,23(3):302.
[63]
施明达(Shi M D) . 火炸药 (Explosives and Propellans), 1992, (04):24.
[64]
Klapötke T M, Krumm B, Steemann F X . Propell. Explos. Pyrot., 2009,34:13.
[65]
Il’yasov S G, Danilova E O . Propell. Explos. Pyrot., 2012,37:427.
[66]
党智敏(Dang Z M), 赵凤起(Zhao F Q), 李上文(Li S W), 阴翠梅(Yin C M), 屠德民(Tu D M) . 西安交通大学学报 (Journal of Xi’an Jiaotong University), 2000, (01):88.
[67]
Dang Z, Zhao F, Li S . J. Energ. Mater., 2000,18:29.
[68]
Dang Z, Zhao F, Li S, Yin C, Hu R . J. Therm. Anal. Calorim., 2000,61:771.
[69]
张志忠(Zhang Z Z), 王伯周(Wang B Z), 石尊常(Shi Z C), 姬月萍(Ji Y P), 刘愆(Liu Q), 朱春华(Zhu C H) . 火炸药学报 (Chinese Journal of Explosives and Propellans), 2003,26(2):3.
[70]
Gao F, Wang Y, Ji Y, Liu W, Chen B, Wang W . IOP Conf. Ser.: Mater. Sci. Eng., 2017,269:012057. https://iopscience.iop.org/article/10.1088/1757-899X/269/1/012057

doi: 10.1088/1757-899X/269/1/012057
[71]
Koppes W M, Chaykovsky M . US 5276171, 1994.
[72]
Prakash G K S, Bae C, Kroll M, Olah G A . J. Fluorine Chem., 2002,117:103.
[73]
Archibald T G, Manser G E, Immoos John E . US 5420311, 1995.
[74]
Archibald T G, Manser G E . US 5789617, 1998.
[75]
张明权(Zhang M Q), 刘红雨(Liu H Y), 韦兴存(Wei X C), 张磊(Zhang L), 康玲(Kang L) . 化学推进剂与高分子材料 (Chemical Propellants and Polymeric Materials), 2017,15(1):45.
[76]
徐若千(Xu R Q), 姬月萍(Ji Y P), 丁峰(Ding F), 汪伟(Wang W), 兰英(Lan Y), 刘亚静(Liu Y J) . 含能材料 (Chinese Journal of Energetic Materials), 2009,17(6):681.
[77]
李娜(Li N), 熊贤锋(Xiong X F), 莫洪昌(Mo H C), 卢先明(Lu X M), 刘亚静(Liu Y J) . 固体火箭技术 (Journal of Solid Rocket Technology), 2013,36(2):234.
[78]
王晓(Wang X), 罗运军(Luo Y J), 柴春鹏(Cai C P) . 火炸药学报 (Chinese Journal of Explosives and Propellans), 2010,33(6):57.
[79]
Huang T, Jin B, Peng R F, Chu S J . Int. J. Polym. Anal. Charact., 2014,19:522.
[80]
Asghar B, Mansour S . Propell. Explos. Pyrot., 2018,43:364.
[1] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[2] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[3] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[4] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.
[5] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[6] Xiaohui Ma, Liqun Yang, Shijian Zheng, Qilin Dai, Cong Chen, Hongwei Song. All-Inorganic Perovskite Solar Cells: Status and Future [J]. Progress in Chemistry, 2020, 32(10): 1608-1632.
[7] Jingshi Liang, Jiaming Zeng, Junjie Li, Jueqin She, Ruixuan Tan, Bo Liu. Cationic Antimicrobial Polymers [J]. Progress in Chemistry, 2019, 31(9): 1263-1282.
[8] Qiwei Ying, Jianguo Liao, Minhang Wu, Zhihao Zhai, Xinru Liu. Research on Bioactive Glass Nanospheres as Delivery [J]. Progress in Chemistry, 2019, 31(5): 773-782.
[9] Wang Yajun, Jiang Zisheng, Feng Changgen. Metastable Intermolecular Composite Al/Bi2O3 and Its Applications [J]. Progress in Chemistry, 2016, 28(2/3): 391-400.
[10] Du Juan, Lu Ying, Wang Yilong, Guo Guiping, Pan Yingjie. Properties and Applications of Janus Nanomaterials [J]. Progress in Chemistry, 2014, 26(12): 2019-2026.
[11] Chen Yangjun, Liu Xiangsheng, Wang Haibo, Wang Yin, Jin Qiao, Ji Jian. Zwitterions in Surface Engineering of Biomedical Nanoparticles [J]. Progress in Chemistry, 2014, 26(11): 1849-1858.
[12] Zhong Dagen, Liu Zonghua, Zuo Qinhua, Xue Wei. Interaction of Polymeric Nanomaterials with Plasma Proteins [J]. Progress in Chemistry, 2014, 26(04): 638-646.
[13] Xu Lina, Ma Peipei, Chen Qiang, Lin Sicong, Shen Jian. Biological Application of Sulfobetaine Methacrylate Polymers [J]. Progress in Chemistry, 2014, 26(0203): 366-374.
[14] Guo Huihui, Miao Nana, Li Tengfei, Hao Jun, Gao Yuan, Zhang Jianjun. Pharmaceutical Coamorphous——A Newly Defined Single-Phase Amorphous Binary System [J]. Progress in Chemistry, 2014, 26(0203): 478-486.
[15] Wu Kai, Zhang Yao, Zeng Yuqun, Sun Shigang. Safety Performance of Lithium-Ion Battery [J]. Progress in Chemistry, 2011, 23(0203): 401-409.