中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (04): 638-646 DOI: 10.7536/PC130777 Previous Articles   Next Articles

• Review •

Interaction of Polymeric Nanomaterials with Plasma Proteins

Zhong Dagen, Liu Zonghua, Zuo Qinhua, Xue Wei*   

  1. Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 81101151, 31271019)

PDF ( 1221 ) Cited
Export

EndNote

Ris

BibTeX

Because of their unique physical and chemical properties, nanomaterials have been widely used in a number of fields. The growing use of nanomaterial requires careful assessment of unexpected toxicities (cytotoxicity, hemolytic toxicity, haematological toxicity and immunogenicity toxicity) and biological interactions. To present, there have been a large number of studies aimed at examining and understanding the interactions between nanoparticles and human cells or proteins, and some achievement has been made in the research. In clinical applications, some biomedical nanomaterials are often introduced into the blood tissue by intravenous administration, penetration, solubilization, diffusion, etc. Blood is a highly complexity tissue composed mainly of red blood cells , white cells, platelets, and plasma. Among them, blood plasma is a complex fluid containing over 3700 different proteins. In any case, the contact and interaction of the nanomaterials with highly abundant plasma proteins are unavoidable. However, the interactions between nanomaterials and blood plasma may play a crucial role in determining the toxicity of nanomaterials. To date, little is known about how nanomaterials will interact with plasma proteins (or other blood components) at molecular level. Here we mainly review recent research that involves the interaction of three representative polymeric nanomaterials (polycations, polymeric micelles, and drug (gene)/carrier composite nanoparticles) with plasma proteins and their associated diverse analytical techniques. This knowledge is important from the perspective of molecular design and blood safety of nanomaterials for in vivo applications.

Contents
1 Introduction
2 Analytical tools
3 Interaction of polycations with plasma proteins
3.1 Polyethylenimine
3.2 Chitosan
3.3 Polyamidoamine
4 Interaction of polymeric micelles with plasma proteins
5 Interaction of drug (gene)/carrier composite nanoparticles with plasma proteins
6 Interaction of other polymeric nanomaterials with plasma proteins
7 Conclusion

CLC Number: 

[1] Nel A E, Mädler L, Velegol D, Xia T, Hoek E M V, Somasundaran P, Klaessig F, Castranova V, Thompson M. Nat. Mater., 2009, 8(7): 543.
[2] Jain K, Kesharwani P, Gupta U, Jain N K. Int. J. Pharm., 2010, 394(1): 122.
[3] Zhong D, Jiao Y, Zhang Y, Zhang W, Li N, Zuo Q, Wang Q, Xue W, Liu Z. Biomaterials, 2012, 34(1): 294.
[4] Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson K A. Proc. Natl. Acad. Sci. U. S. A., 2008, 105(38): 14265.
[5] Cedervall T, Lynch I, Lindman S, Berggrd T, Thulin E, Nilsson H, Dawson K A, Linse S. Natl. Acad. Sci. U. S. A., 2007, 104(7): 2050.
[6] Li L, Mu Q, Zhang B, Yan B. Analyst, 2010, 135(7): 1519.
[7] Kafil V, Omidi Y. BioImpacts, 2011, 1(1): 23.
[8] Li C, Zhong D, Zhang Y, Tuo W, Li N, Wang Q, Liu Z, Xue W. J. Mater. Chem. B, 2013, 1: 1885.
[9] Zhu A, Yuan L, Chen T, Wu H, Zhao F. Carbohyd. Polym., 2007, 69(2): 363.
[10] Wu H, Zhu A, Yuan L. Mater. Chem. Phys., 2008, 112(1): 41.
[11] Li X, Chen M, Yang W, Zhou Z, Liu L, Zhang Q. Colloids Surf. B, 2012, 92: 136.
[12] Xiao F, Gu M, Liang Y, Li L, Luo Y. Spectrochim. Acta A, 2014, 118: 1106.
[13] Li L, Xiong S, Wang Y, Song G, Wu S, Chu P K, Xu Z. J. Disper. Sci. Technol., 2011, 32(8): 1185.
[14] Dobrovolskaia M A, Patri A K, Zheng J, Clogston J D, Ayub N, Aggarwal P, Neun B W, Hall J B, McNeil S E. Nanomed. Nanotechnol., 2009, 5(2): 106.
[15] Jiang X, Shang L, Wang Y, Dong S. Biomacromolecules, 2005, 6(6): 3030.
[16] Froehlich E, Mandeville J S, Jennings C J, Sedaghat-Herati R, Tajmir-Riahi H A. J. Phys. Chem. B, 2009, 113(19): 6986.
[17] Zhang W, Zhong D, Liu Q, Zhang Y, Li N, Wang Q, Liu Z, Xue W. J. Biomat. Sci. -Polym. E, 2013, 24: 1549.
[18] Mandeville J S, Tajmir-Riah, H A. Biomacromolecules, 2010, 11(2): 465.
[19] Chen L, Tianqing L. Int. J. Biol. Macromol., 2008, 42(5): 441.
[20] Shcharbin D, Janicka M, Wasiak M, Palecz B, Przybyszewska M, Zaborski M, Bryszewska M. BBA-Proteins Proteom., 2007, 1774(7): 946.
[21] Casals E, Pfaller T, Duschl A, Oostingh G J, Puntes V. ACS Nano, 2010, 4(4): 3623.
[22] Beauchemin R, N'Soukpoe-Kossi C N, Thomas T J, Thomas T, Carpentier R, Tajmir-Riahi H A. Biomacromolecules, 2007, 8(10): 3177.
[23] Martínez-Tomé M J, Esquembre R, Mallavia R, Mateo C R. Biomacromolecules, 2010, 11(6): 1494.
[24] Shang L, Wang Y, Jiang J, Dong S. Langmuir, 2007, 23(5): 2714.
[25] Yang Q, Liang J, Han H. J. Phys. Chem. B, 2009, 113(30): 10454.
[26] Kelarakis A, Castelletto V, Krysmann M J, Havredaki V, Viras K, Hamley I W. Biomacromolecules, 2008, 9(5): 1366.
[27] Li Y, Budamagunta M S, Luo J, Xiao W, Voss J C, Lam K S. ACS Nano, 6(11): 9485.
[28] Lai B F L, Creagh A L, Janzen J, Haynes C A, Brooks D E, Kizhakkedathu J N. Biomaterials, 2010, 31(26): 6710.
[29] Zhao Y, Li F, Carvajal M T, Harris M T. J. Colloid. Interf. Sci., 2009, 332(2): 345.
[30] Lück M, Schröder W, Harnisch S, Thode K, Blunk T, Paulke B R, Kresse M, Müller R H. Electrophoresis, 1997, 18(15): 2961.
[31] Kaufman E D, Belyea J, Johnson M C, Nicholson Z M, Ricks J L, Shah P K, Bayless M, Pettersson T, Feldotö Z, Blomberg E, Claesson P, Franzen S. Langmuir, 2007, 23(11): 6053.
[32] Liu H, Hu N. J. Phys. Chem. B, 2006, 110(29): 14494.
[33] Hook A L, Thissen H, Voelcker N H. Langmuir, 2009, 25(16): 9173.
[34] Larsericsdotter H, Oscarsson S, Buijs J. J. Colloid. Interf. Sci., 2005, 289(1): 26.
[35] Hassan N, Ruso J M, Somasundaran P. Colloids Surf. B, 2011, 82(2): 581.
[36] Naha P C, Davoren M, Lyng F M, Byrne H J. Toxicol. Appl. Pharm., 2010, 246(1): 91.
[37] Kolhatkar R B, Kitchens K M, Swaan P W, Ghandehari H. Bioconjugate. Chem., 2007, 18(6): 2054.
[38] 张怀敬(Zhang H J), 何华(He H), 李杉杉(Li S S), 芦金荣(Lu J R), Chuong P H. 化学学报(Acta Chim. Sinica), 2010, 68(17): 1741.
[39] Jones C F, Campbell R A, Brooks A E, Assemi S, Tadjiki S, Thiagarajan G, Mulcock C, Weyrich A S, Brooks B D, Ghandehari H, Grainger D W. ACS Nano, 2012, 6(11): 9900.
[40] Ciolkowski M, Petersen J F, Ficker M, Janaszewska A, Christensen J B, Klajnert B, Bryszewska M. Nanomed. Nanotechnol., 2012, 8(6): 815.
[41] Gong J, Chen M, Zheng Y, Wang S, Wang Y. J. Control. Release, 2012, 159(3): 312.
[42] Oerlemans C, Bult W, Bos M, Storm G, Nijsen J F W, Hennink W E. Pharm. Res., 2010, 27(12): 2569.
[43] Wang Y, Jiang Q, Liu L R, Zhang Q. Polymer, 2007, 48(14): 4135.
[44] Godbey W T, Wu K K, Hirasaki G J, Mikos A G. Gene. Ther., 1999, 6(8): 1380.
[45] Liang B, He M L, Xiao Z P, Li Y, Chan C, Kung H F, Shuai X T, Peng Y. Biochem. Bioph. Res. Co., 2008, 367(4): 874.
[46] 刘晓霞(Liu X X), 江明(Jiang M). 高分子学报(Acta Polymerica Sinica), 2011, 9: 1007.
[47] Wittemann A, Azzam T, Eisenberg A. Langmuir, 2007, 23(4): 2224.
[48] Arifin D R, Palmer A F. Biomacromolecules, 2005, 6(4): 2172.

[1] Yizhou Yang, Bingquan Peng, Xiaoling Lei, Haiping Fang. Aromatic Rings in Ion Soultions: Two-Dimensional Crystals of Unconventional Stoichiometries and Ferromagnetism [J]. Progress in Chemistry, 2022, 34(7): 1524-1536.
[2] Li Geng, Li Jie, Jiang Hongyu, Liang Xiaozhong, Guo Kunpeng. Mechano-Responsive Luminescent Polymers [J]. Progress in Chemistry, 2022, 34(10): 2222-2238.
[3] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[4] Zhao Jing, Wang Ziya, Mo Lixin, Meng Xiangyou, Li Luhai, Peng Zhengchun. Performance Enhancing Mechanism,Implementation and Practical Advantages of Microstructured Flexible Pressure Sensors [J]. Progress in Chemistry, 2022, 34(10): 2202-2221.
[5] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[6] Zhijun Pan, Wei Zhuang, Hongfei Wang. Dynamic Vibrational Spectroscopy in Condensed Matter Chemistry: Theory and Techniques [J]. Progress in Chemistry, 2020, 32(8): 1203-1218.
[7] Yue Ding, Bo Lu, Junhui Ji. Compatibilization Strategies of PLA-Based Biodegradable Materials [J]. Progress in Chemistry, 2020, 32(6): 738-751.
[8] Dan-Wei Zhang, Hui Wang, Zhan-Ting Li. Macromolecular and Supramolecular Helical Tubes: Synthesis and Functions [J]. Progress in Chemistry, 2020, 32(11): 1665-1679.
[9] Hui-Juan Wang, Yu Liu. Molecular Binding and Assembly of Sulfonated Crown Ethers [J]. Progress in Chemistry, 2020, 32(11): 1651-1664.
[10] Yue Liu, Yihan Wu, Hongwei Pang, Xiangxue Wang, Shujun Yu, Xiangke Wang. Study on the Removal of Water Pollutants by Graphite Phase Carbon Nitride Materials [J]. Progress in Chemistry, 2019, 31(6): 831-846.
[11] Xiaojuan Wang, Zhenzhen Liu, Qi Chen, Xiaoqiang Wang, Fang Huang. Interactions between Graphene Materials and Proteins [J]. Progress in Chemistry, 2019, 31(2/3): 236-244.
[12] Yao-Hua Liu, Yu Liu. Photo-Controlled Supramolecular Assemblies Based on Azo Group [J]. Progress in Chemistry, 2019, 31(11): 1528-1539.
[13] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.
[14] Lianxun Gao, Chuanqing Kang*, Lianxun Gao. Anion-Naphthalenediimide Interactions and Their Applications [J]. Progress in Chemistry, 2018, 30(7): 902-912.
[15] Guangyan Qing, Zhonghui Chen, Guangyan Qing*. Interfacial Interaction on Phospholipid Membrane [J]. Progress in Chemistry, 2018, 30(7): 888-901.