中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (2/3): 391-400 DOI: 10.7536/PC150812 Previous Articles   

• Review and comments •

Metastable Intermolecular Composite Al/Bi2O3 and Its Applications

Wang Yajun*, Jiang Zisheng, Feng Changgen   

  1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work is supported by the project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology) (No.YBKT16-06).
PDF ( 1586 ) Cited
Export

EndNote

Ris

BibTeX

Metastable intermolecular composite (MIC) Al/Bi2O3 has good features of high combustion efficiency, fast energy releasing rate, high pressure pulse, good safety performance and being environment-friendly. It shows good application prospects in pyrotechnics, explosives and propellants, etc. In this review, reaction mechanisms and models, preparation and applications of the metastable intermolecular composite Al/Bi2O3 are summarized. First, various theories and models which were used to explain the reaction mechanism of thermites are introduced and compared. The models of the CJ(Chapman-Jouguet) detonation and thermal equilibrium which could interpret and simulate output pressure of Al/Bi2O3 reasonably are discussed in detail. Second, the preparing methods of Bi2O3 and Al/Bi2O3 are summarized. By using different preparing processes, the morphologies, microstructures and combustion performances of composites could be regulated. Meanwhile, the effects of reactants particle size and various additives in preparing Al/Bi2O3 on its combustion performances are analyzed. Furthermore, a brief introduction of the application research is also presented. Finally, we proposed prospects about the metastable intermolecular composite Al/Bi2O3.

Contents
1 Introduction
2 Thermite reaction mechanism
2.1 Ignition mechanism
2.2 Pressure generation model
3 Preparation methods
3.1 Preparation of nano Bi2O3
3.2 Preparation of nano Al/Bi2O3
4 Performance tuning of Al/Bi2O3
4.1 Particle size of material
4.2 Additive
5 Applications of Al/Bi2O3
5.1 Initiating explosives
5.2 Miniature initiating explosive devices
5.3 Propellants
6 Conclusion and outlook

CLC Number: 

[1] Balaz P, Achimovicova M, Balaz M, Billik P, Cherkezova-Zheleva Z, Criado J M, Delogu F, Dutkova E, Gaffet E, Gotor F J, Kumar R, Mitov I, Rojac T, Senna M, Streletskii A, Wieczorek-Ciurowa K. Chem. Soc. Rev., 2013, 42(18):7571.
[2] Rossi C, Kaili Z, Estëve D, Alphonse P, Tailhades P, Vahlas C. J. Microelectromech. Syst., 2007, 16(4):919.
[3] Asay B W, Son S F, Busse J R, Oschwald D M. Propell. Explos. Pyrot., 2004, 29(4):216.
[4] Chowdhury S, Sullivan K, Piekiel N, Zhou L, Zachariah M R. J. Phys. Chem. C, 2010, 114(20):9191.
[5] Fischer S H, Grubelich M C. SAND98-1176C. Albuquerque:Sandia National Labs, 1998.
[6] Dreizin E L. Prog. Energ. Combust., 2009, 35(2):141.
[7] Sarawadekar R G, Agrawal J P. Defence Sci. J., 2008, 58(4):486.
[8] 杨光成(Yang G C), 谯志强(Jiao Z Q). 含能材料(Chin. J. Energ. Mater.), 2014, (3):279.
[9] Rossi C, Estève A, Vashishta P. J. Phys. Chem. Solids, 2010, 71(2):57.
[10] Rossi C. Propell. Explos. Pyrot., 2014, 39(3):323.
[11] Puszynski J. J. Therm. Anal. Calorim., 2009, 96(3):677.
[12] Martirosyan K S, Wang L, Vicent A, Luss D. Propell. Explos. Pyrot., 2009, 34(6):532.
[13] Wang L, Luss D, Martirosyan K S. J. Appl. Phys., 2011, 110(7):074311.
[14] Poda A R, Moser R D, Cuddy M F, Doorenbos Z, Lafferty B J, Weiss C A, Harmon A, Chappell M A, Steevens J A. J. Nanomater. Mol. Nanotechnol., 2013, 2(1):1000105.
[15] Glavier L, Taton G, Ducéré J, Baijot V, Pinon S, Calais T, Estève A, Djafari Rouhani M, Rossi C. Combust. Flame, 2015, 162(5):1813.
[16] Ostrowski P P, Bichay M M, Allen T M, Sanders V E, Son S F. AIAA Paper 2005-3514. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Tucson, AZ, 2005.
[17] Sanders V E, Asay B W, Foley T J, Tappan B C, Pacheco A N, Son S F. J. Propul. Power, 2007, 23(4):707.
[18] 安亭(An T), 赵凤起(Zhao F Q), 裴庆(Pei Q), 仪建华(Yi J H), 郝海霞(Hao H X), 徐司雨(Xu S Y), 谭艺(Tan Y). 固体火箭技术(J. Solid Rocket Technol.), 2012, 35(6):773.
[19] Levitas V I, Asay B W, Son S F, Pantoya M. J. Appl. Phys., 2007, 101(8):083524.
[20] Levitas V I. Phil. Trans. R. Soc. A, 2013, 371:20120215.
[21] Levitas V I, Pantoya M L, Chauhan G, Rivero I. J. Phys. Chem. C, 2009, 113(32):14088.
[22] Levitas V I, Pantoya M L, Dikici B. Appl. Phys. Lett., 2008, 92(1):011921.
[23] Levitas V I, Pantoya M L, Watson K W. Appl. Phys. Lett., 2008, 92(20):201917.
[24] Pantoya M L, Levitas V I, Granier J J, Henderson J B. J. Propul. Power, 2009, 25(2):465.
[25] Rai A, Lee D, Park K, Zachariah M R. J. Phys. Chem. B, 2004, 108(39):14793.
[26] Rai A, Park K, Zhou L, Zachariah M R. Combust. Theor. Model., 2006, 10(5):843.
[27] Piekiel N W, Zhou L, Sullivan K T, Chowdhury S, Egan G C, Zachariah M R. Combust. Sci. Technol., 2014, 186(9):1209.
[28] Jian G, Chowdhury S, Sullivan K, Zachariah M R. Combust. Flame, 2013, 160(2):432.
[29] Jacob R J, Jian G, Guerieri P M, Zachariah M R. Combust. Flame, 2015, 162(1):258.
[30] Martirosyan K S, Zyskin M, Jenkins C M, Yuki Horie Y. J. Appl. Phys., 2012, 112(9):94319.
[31] Baijot V, Glavier L, Ducéré J, Djafari-Rouhani M, Rossi C, Estève A. Propell. Explos. Pyrot., 2015, 40(3):402.
[32] 李卫(Li W), 黄伯云(Huang B Y), 周科朝(Zhou K C), 杨华(Yang H). 功能材料(J. Funct. Mater.), 2005(2):279.
[33] He W D, Qin W, Wu X H, Ning H L. Mater. Lett., 2007, 61(19/20):4100.
[34] 丁鹏(Ding P), 杜尧国(Du R G), 徐自力(Xu Z L). 吉林大学学报(理学版)(J. Jilin Univ. (Sci. Ed.)). 2004(3):451.
[35] Faisal M, Ibrahim A A, Bouzid H, Al-Sayari S A, Al-Assiri M S, Ismail A A. J. Mol. Catal. A:Chem., 2014, 387:69.
[36] 陈世柱(Chen S Z),尹志民(Yin Z M). 材料科学与工程(Mater. Sci. Eng.), 1998(3):62.
[37] Martirosyan K S, Luss D. Chem. Eng. Technol., 2009, 32(9):1376.
[38] 刘燕(Liu Y), 印会鸣(Ying H M), 吴艳凤(Wu Y F), 周爱秋(Zhou A Q), 许效红(Xu X H). 硅酸盐通报(Bull. Chin. Ceram. Soc.), 2010, 29(4):751.
[39] Shen X, Wu S, Zhao H, Liu Q. Physica E, 2007, 39(1):133.
[40] Lunca Popa P, Sønderby S, Kerdsongpanya S, Lu J, Bonanos N, Eklund P. J. Appl. Phys., 2013, 113(4):046101.
[41] Steele J A, Lewis R A. Opt. Mater. Express, 2014, 4(10):2133.
[42] Martirosyan K S, Wang L, Vicent A, Luss D. Nanotechnology, 2009, 20(40):405609.
[43] Patel V K, Ganguli A, Kant R, Bhattacharya S. RSC Adv., 2015, 5:14967.
[44] Martirosyan K S. J. Mater. Chem., 2011, 21:9400.
[45] Wang L. Doctoral Dissertation of University of Houston, 2011.
[46] You L, Chen Z, Zou X, Ding H, Chen W, Chen L, Yuan G, Wang J. ACS Nano, 2012, 6(6):5388.
[47] Drache M, Roussel P, Wignacourt J. Chem. Rev., 2007, 107(1):80.
[48] Puszynski J A, Bulian C J, Swiatkiewicz J J. J. Propul. Power, 2007, 23(4):698.
[49] Nellums R R, Terry B C, Tappan B C, Son S F, Groven L J. Propell. Explos. Pyrot. 2013, 38(5):605.
[50] FlorinPetre C, Chamberland D, Ringuette T, Ringuette S, Paradis S, Stowe R. Energ. Mater. Chem. Propul., 2014, 13(6):479.
[51] Umbrajkar S M, Seshadri S, Schoenitz M, Hoffmann V K, Dreizin E L. J. Propul. Power, 2008, 24(2):189.
[52] Williams R A, Patel J V, Ermoline A, Schoenitz M, Dreizin E L. Combust. Flame, 2013, 160(3):734.
[53] Monk I, Williams R, Liu X H, Dreizin E L. Combust. Sci. Technol., 2015, 187(8):1276.
[54] Thiruvengadathan R, Chung S W, Basuray S, Balasubramanian B, Staley C S, Gangopadhyay K, Gangopadhyay S. Langmuir, 2014, 30(22):6556.
[55] Sullivan K, Young G, Zachariah M R. Combust. Flame, 2009, 156(2):302.
[56] Nellums R R, Son S F, Groven L J. Propell. Explos. Pyrot., 2014, 39(3):463.
[57] Puchades I, Hobosyan M, Fuller L F, Liu F, Thakur S, Martirosyan K S, Lyshevski S E. Nanotechnology (IEEE-NANO), 2014 IEEE 14th International Conference on New York, 2014. 83.
[58] 安亭(An T), 赵凤起(Zhao F Q), 裴庆(Pei Q), 肖立柏(Xiao L B), 徐司雨(Xu S Y), 高红旭(Gao H X), 邢晓玲(Xing X L). 无机化学学报(Chin. J. Inorg. Chem.), 2011, 27(2):231.
[59] 安亭(An T), 赵凤起(Zhao F Q), 郝海霞(Hao H X), 马海霞(Ma H X), 姚二岗(Yao E G), 杨勇(Yang Y), 谭艺(Tan Y). 火炸药学报(Chin. J. Explos. Propell.), 2011, 34(1):67.
[1] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[2]

Huang Haifeng1,Meng Zihui1*,Zhou Zhiming1*,Gao Haixiang2,Zhang Jun1, Wu Yukai1

. Energetic Salts and Energetic Ionic Liquids [J]. Progress in Chemistry, 2009, 21(01): 152-163.