中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (4): 801-814 DOI: 10.7536/PC210130 Previous Articles   Next Articles

• Review •

Atmospheric Aerosol Hygroscopicity and Their Influence on Environment

Jiali Zhong1,3, Weigang Wang1,2(), Chao Peng4, Nan Ma3(), Zhijun Wu5, Maofa Ge1,2   

  1. 1 State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences,Beijing 100190, China
    2 University of Chinese Academy of Sciences,Beijing 100049, China
    3 Institute for Environmental and Climate Research, Jinan University,Guangzhou 511443, China
    4 State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,Guangzhou 510640, China
    5 State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University,Beijing 100871, China
  • Received: Revised: Online: Published:
  • Contact: Weigang Wang, Nan Ma
  • Supported by:
    National Key Research and Development Program of China(2017YFC0209500); National Natural Science Foundation of China(91844301)
Richhtml ( 45 ) PDF ( 683 ) Cited
Export

EndNote

Ris

BibTeX

Hygroscopicity is one of the aerosol’s most important physicochemical properties, which affects the lifetime and atmospheric behavior of aerosols. It plays a vital role in the environment, climate change, and human health. The hygroscopicity parameters and thermodynamic models are introduced. The effects of aerosol diameter, chemical composition, and multi-component aerosol on hygroscopicity are analyzed in the following section. The relevant observations in the urban, rural area, forest, polar region, and ocean are summarized. Hygroscopicity growth factor (g(RH)), scattering enhancement factors (f(RH)) and hygroscopicity parameter κ are common hygroscopicity parameters which can represent aerosol hygroscopicity. The Zdanovski-Stokes-Robinson (ZSR) mixing rule and many thermodynamic models can predict the aerosol hygroscopicity with different chemical compositions, which are some important tools to study the multi-component aerosol and phase equilibrium. Aerosol diameter, chemical composition and mixed state affect hygroscopicity, for example g(RH), and changes in deliquescence relative humidity or efflorescence relative humidity. Because of different emission sources and environmental conditions, the aerosol particle size distribution, chemical composition and mixed state are different in the urban area, rural area, forest, polar region and ocean, and then aerosol hygroscopicity are different. Hygroscopicity affects aerosol water content and phase state directly, and atmospheric chemical processes, aging process and lifetime of aerosol will be changed. Environmental visibility, radiation effects, and aerosol deposition sites and toxicity in the human body also are influenced by aerosol hygroscopicity. Overall, a comprehensive review of hygroscopicity parameters, theoretical models, laboratory studies, field experiments, and environmental impacts provides a reference for future research.

Contents

1 Introduction

2 Hygroscopicity parameters and models

2.1 Hygroscopicity parameters

2.2 Aerosol hygroscopic models

3 Influence factors of aerosol hygroscopicity

3.1 The influence of particle size

3.2 The influence of chemical composition

3.3 The influence of multi-component mixture

4 Aerosol hygroscopicity in field studies

4.1 Observation in urban area

4.2 Observation in rural and forest areas

4.3 Observation in oceans and polar regions

4.4 Vertically Distributed Aerosol hygroscopicity

5 Effects of aerosol hygroscopicity on atmospheric chemistry, visibility, climate and human health

5.1 Effects of aerosol hygroscopicity on atmospheric chemistry

5.2 Effects of aerosol hygroscopicity on visibility

5.3 Effects of aerosol hygroscopicity on climate

5.4 Effects of aerosol hygroscopicity on human health

6 Conclusion and outlook

Fig. 1 Hygroscopic growth factor (g(RH)) and scattering enhancement factors (f(RH)) as a function of relative humidity. Black dot: measured values g(RH) of 100 nm (NH4)2SO4 in deliquescence experiment at 298.15K. Triangle mark: measured values g(RH) of 100 nm (NH4)2SO4 in efflorescence experiment at 298.15K[36], black dashed line: The predicted g(RH) from the E-AIM model in deliquescence experiment and efflorescence experiment are indicated by black solid and dashed line[36], respectively. The calculated g(RH) by equation(3) for different κ(0.1,0.5,1.5)are indicated by purple dashed line, green solid line and yellow dashed line, respectively. Red line: the f(RH) of (NH4)2SO4 is calculated by empirical equation( f ( R H ) = 35.1 ( 100 - R H ) - 0.86)[3]
[1]
Seinfeld J H, Pandis S N. Atmospheric Chemistry and Physics: from Air Pollution to Climate Change. John Wiley & Sons, 2016.
[2]
Tang M J, Whitehead J, Davidson N M, Pope F D, Alfarra M R, McFiggans G, Kalberer M. Phys. Chem. Chem. Phys., 2015, 17(48): 32194.

doi: 10.1039/c5cp03795f pmid: 26578034
[3]
Kreidenweis S M, Asa-Awuku A. Aerosol Hygroscopicity: Particle Water Content and Its Role in Atmospheric Processes. In Treatise on Geochemistry, 2014: 331.
[4]
Liu D, Allan J, Whitehead J, Young D, Flynn M, Coe H, McFiggans G, Fleming Z L, Bandy B. Atmos. Chem. Phys., 2013, 13(4): 2015.

doi: 10.5194/acp-13-2015-2013
[5]
Henning S, Ziese M, Kiselev A, Saathoff H, Möhler O, Mentel T F, Buchholz A, Spindler C, Michaud V, Monier M, Sellegri K, Stratmann F. Atmos. Chem. Phys., 2012, 12(10): 4525.

doi: 10.5194/acp-12-4525-2012
[6]
Marcolli C, Luo B P, Peter T. J. Phys. Chem. A, 2004, 108(12): 2216.

doi: 10.1021/jp036080l
[7]
Kim N, Park M, Yum S S, Park J S, Shin H J, Ahn J Y. Atmos. Environ., 2018, 185: 221.

doi: 10.1016/j.atmosenv.2018.05.019
[8]
Wu Z J, Zheng J, Wang Y, Shang D J, Du Z F, Zhang Y H, Hu M. Sci. Total. Environ., 2017, 579: 1260.

doi: 10.1016/j.scitotenv.2016.11.112
[9]
Xia C, Sun J Y, Qi X F, Shen X J, Zhong J T, Zhang X Y, Wang Y Q, Zhang Y M, Hu X Y. Sci. Total. Environ., 2019, 685: 239.

doi: 10.1016/j.scitotenv.2019.05.283
[10]
Nguyen T K V, Petters M D, Suda S R, Guo H, Weber R J, Carlton A G. Atmos. Chem. Phys., 2014, 14(20): 10911.

doi: 10.5194/acp-14-10911-2014
[11]
Pajunoja A, Hu W W, Leong Y J, Taylor N F, Miettinen P, Palm B B, Mikkonen S, Collins D R, Jimenez J L, Virtanen A. Atmos. Chem. Phys., 2016, 16(17): 11163.

doi: 10.5194/acp-16-11163-2016
[12]
Li W J, Liu L, Xu L, Zhang J, Yuan Q, Ding X K, Hu W, Fu P Q, Zhang D Z. Sci. Total. Environ., 2020, 719: 137520.

doi: 10.1016/j.scitotenv.2020.137520
[13]
Boreddy S K R, Kawamura K. Sci. Total. Environ., 2016, 557-558: 285.
[14]
Qu W J, Wang J, Zhang X Y, Wang D, Sheng L F. Atmos. Res., 2015, 153: 500.

doi: 10.1016/j.atmosres.2014.10.009
[15]
Lee J W L, CarrascÓn V, Gallimore P J, Fuller S J, Björkegren A, Spring D R, Pope F D, Kalberer M. Phys. Chem. Chem. Phys., 2012, 14(22): 8023.

doi: 10.1039/c2cp24094g
[16]
Liu Q, Liu D T, Gao Q, Tian P, Wang F, Zhao D L, Bi K, Wu Y Z, Ding S, Hu K, Zhang J L, Ding D P, Zhao C S. Atmos. Chem. Phys., 2020, 20(6): 3931.

doi: 10.5194/acp-20-3931-2020
[17]
Wang K, Zhang Y, Yahya K, Wu S Y, Grell G. Atmos. Environ., 2015, 115: 716.

doi: 10.1016/j.atmosenv.2014.12.007
[18]
Titos G, Cazorla A, Zieger P, Andrews E, Lyamani H, Granados-Muñoz M J, Olmo F J, Alados-Arboledas L. Atmos. Environ., 2018, 179: 331.

doi: 10.1016/j.atmosenv.2018.02.030
[19]
Vu T V, Delgado-Saborit J M, Harrison R M. Air Qual. Atmos. Heal., 2015, 8(5): 429.
[20]
Mikhailov E, Vlasenko S, Martin S T, Koop T, Pöschl U. Atmos. Chem. Phys., 2009, 9(24): 9491.

doi: 10.5194/acp-9-9491-2009
[21]
Tang M J, Chan C K, Li Y J, Su H, Ma Q X, Wu Z J, Zhang G H, Wang Z, Ge M F, Hu M, He H, Wang X M. Atmos. Chem. Phys., 2019, 19(19): 12631.

doi: 10.5194/acp-19-12631-2019
[22]
Khvorostyanov V I, Curry J A. J. Geophys. Res., 2007, 112(D5): D05206.
[23]
Kreidenweis S M, Koehler K, DeMott P J, Prenni A J, Carrico C, Ervens B. Atmos. Chem. Phys., 2005, 5(5): 1357.

doi: 10.5194/acp-5-1357-2005
[24]
Rissler J, Vestin A, Swietlicki E, Fisch G, Zhou J, Artaxo P, Andreae M O. Atmos. Chem. Phys., 2006, 6(2): 471.

doi: 10.5194/acp-6-471-2006
[25]
Zhao C S, Yu Y L, Kuang Y, Tao J C, Zhao G. Adv. Atmos. Sci., 2019, 36(9): 1015.

doi: 10.1007/s00376-019-8248-1
[26]
Chan M N, Choi M Y, Ng N L, Chan C K. Environ. Sci. Technol., 2005, 39(6): 1555.

pmid: 15819209
[27]
Wills J B, Knox K J, Reid J P. Chem. Phys. Lett., 2009, 481(4/6): 153.

doi: 10.1016/j.cplett.2009.09.020
[28]
Lü X, Zhang Y H. Acta Chim. Sinica, 2020, 78(4): 326.

doi: 10.6023/A19100369
[29]
Jing B, Tong S R, Liu Q F, Li K, Wang W G, Zhang Y H, Ge M F. Atmos. Chem. Phys., 2016, 16(6): 4101.

doi: 10.5194/acp-16-4101-2016
[30]
Parsons M T, Knopf D A, Bertram A K. J. Phys. Chem. A, 2004, 108(52): 11600.

doi: 10.1021/jp0462862
[31]
Bai Z P, Ji Y, Pi Y Q, Yang K X, Wang L, Zhang Y Q, Zhai Y D, Yan Z G, Han X D. Atmos. Environ., 2018, 172: 149.

doi: 10.1016/j.atmosenv.2017.10.031
[32]
Ray K K, Lee H D, Gutierrez M A, Chang F J, Tivanski A V. Anal. Chem., 2019, 91(12): 7621.

doi: 10.1021/acs.analchem.9b00333
[33]
Chu Y X, Sauerwein M, Chan C K. Phys. Chem. Chem. Phys., 2015, 17(30): 19789.

doi: 10.1039/C5CP02404H
[34]
Choi M Y, Chan C K, Zhang Y H. J. Phys. Chem. A, 2004, 108(7): 1133.

doi: 10.1021/jp0355049
[35]
Petters M D, Kreidenweis S M. Atmos. Chem. Phys., 2007, 7(8): 1961.

doi: 10.5194/acp-7-1961-2007
[36]
Lei T, Zuend A, Cheng Y F, Su H, Wang W G, Ge M F. Atmos. Chem. Phys., 2018, 18(2): 1045.

doi: 10.5194/acp-18-1045-2018
[37]
Gysel M, Crosier J, Topping D O, Whitehead J D, Bower K N, Cubison M J, Williams P I, Flynn M J, McFiggans G B, Coe H. Atmos. Chem. Phys., 2007, 7(24): 6131.

doi: 10.5194/acp-7-6131-2007
[38]
Clegg S L, Seinfeld J H. J. Phys. Chem. A, 2004, 108(6): 1008.

doi: 10.1021/jp030827q
[39]
a. Nenes A, Pandis S N, Pilinis C. Aquatic Geochemistry, 1998, 4(1): 123;

doi: 10.1023/A:1009604003981
b. Semeniuk K, Dastoor A. Atmosphere, 2020, 11(2): 156.
[40]
a. Nenes A, Pandis S N, Pilinis C. Atmospheric Environment, 1999, 33(10): 1553;

doi: 10.1016/S1352-2310(98)00352-5
b. Fountoukis C, Nenes A. Atmospheric Chemistry and Physics, 2007, 7(17):4639.
[41]
a. Wexler A S, Clegg S L. Journal of Geophysical Research: Atmospheres, 2002, 107(D14): ACH14-1-ACH14-14;

pmid: 21504090
b. Friese E, Ebel A. J. Phys. Chem. A, 2010, 114(43): 11595.

pmid: 21504090
[42]
Zuend A, Marcolli C, Luo B P, Peter T. Atmos. Chem. Phys., 2008, 8(16): 4559.

doi: 10.5194/acp-8-4559-2008
[43]
Zuend A, Marcolli C, Booth A M, Lienhard D M, Soonsin V, Krieger U K, Topping D O, McFiggans G, Peter T, Seinfeld J H. Atmos. Chem. Phys., 2011, 11(17): 9155.

doi: 10.5194/acp-11-9155-2011
[44]
Ganbavale G, Zuend A, Marcolli C, Peter T. Atmos. Chem. Phys., 2015, 15(1): 447.

doi: 10.5194/acp-15-447-2015
[45]
Capps S L, Henze D K, Hakami A, Russell A G, Nenes A. Atmos. Chem. Phys., 2012, 12(1): 527.

doi: 10.5194/acp-12-527-2012
[46]
Wang G H, Zhang F, Peng J F, Duan L, Ji Y M, Marrero-Ortiz W, Wang J Y, Li J J, Wu C, Cao C, Wang Y, Zheng J, Secrest J, Li Y X, Wang Y Y, Li H, Li N, Zhang R Y. Atmos. Chem. Phys., 2018, 18(14): 10123.

doi: 10.5194/acp-18-10123-2018
[47]
Gysel M, Weingartner E, Baltensperger U. Environ. Sci. Technol., 2002, 36(1): 63.

pmid: 11811491
[48]
Biskos G, Russell L M, Buseck P R, Martin S T. Geophys. Res. Lett., 2006, 33(7): L07801.
[49]
Giamarelou M, Smith M, Papapanagiotou E, Martin S T, Biskos G. Aerosol Sci. Technol., 2018, 52(5): 536.

doi: 10.1080/02786826.2018.1432848
[50]
Zieger P, Väisänen O, Corbin J C, Partridge D G, Bastelberger S, Mousavi-Fard M, Rosati B, Gysel M, Krieger U K, Leck C, Nenes A, Riipinen I, Virtanen A, Salter M E. Nat. Commun., 2017, 8: 15883.

doi: 10.1038/ncomms15883 pmid: 28671188
[51]
Biskos G, Malinowski A, Russell L M, Buseck P R, Martin S T. Aerosol Sci. Technol., 2006, 40(2): 97.

doi: 10.1080/02786820500484396
[52]
Lei T, Ma N, Hong J, Tuch T, Wang X, Wang Z B, Pöhlker M, Ge M F, Wang W G, Mikhailov E, Hoffmann T, Pöschl U, Su H, Wiedensohler A, Cheng Y F. Atmos. Meas. Tech., 2020, 13(10): 5551.

doi: 10.5194/amt-13-5551-2020
[53]
Estillore A D, Morris H S, Or V W, Lee H D, Alves M R, Marciano M A, Laskina O, Qin Z, Tivanski A V, Grassian V H. Phys. Chem. Chem. Phys., 2017, 19(31): 21101.

doi: 10.1039/c7cp04051b pmid: 28749508
[54]
Jing B, Peng C, Wang Y D, Liu Q F, Tong S R, Zhang Y H, Ge M F. Sci. Rep., 2017, 7: 43572.

doi: 10.1038/srep43572 pmid: 28240258
[55]
Peng C, Jing B, Guo Y C, Zhang Y H, Ge M F. J. Phys. Chem. A, 2016, 120(7): 1029.

doi: 10.1021/acs.jpca.5b09373
[56]
Darr J P, Gottuso S, Alfarra M, Birge D, Ferris K, Woods D, Morales P, Grove M, Mitts W K, Mendoza-Lopez E, Johnson A. J. Phys. Chem. A, 2018, 122(40): 8062.

doi: 10.1021/acs.jpca.8b07119
[57]
Luo Q W, Hong J, Xu H B, Han S, Tan H B, Wang Q Q, Tao J C, Ma N, Cheng Y F, Su H. Sci. Total. Environ., 2020, 734: 139318.

doi: 10.1016/j.scitotenv.2020.139318
[58]
Hatch C D, Gierlus K M, Zahardis J, Schuttlefield J, Grassian V H. Environ. Chem., 2009, 6(5): 380.

doi: 10.1071/EN09083
[59]
Estillore A D, Hettiyadura A P S, Qin Z, Leckrone E, Wombacher B, Humphry T, Stone E A, Grassian V H. Environ. Sci. Technol., 2016, 50(8): 4259.

doi: 10.1021/acs.est.5b05014 pmid: 26967467
[60]
Textor C, Schulz M, Guibert S, Kinne S, Balkanski Y, Bauer S, Berntsen T, Berglen T, Boucher O, Chin M, Dentener F, Diehl T, Easter R, Feichter H, Fillmore D, Ghan S, Ginoux P, Gong S, Grini A, Hendricks J, Horowitz L, Huang P, Isaksen I, Iversen I, Kloster S, Koch D, Kirkevåg A, Kristjansson J E, Krol M, Lauer A, Lamarque J F, Liu X, Montanaro V, Myhre G, Penner J, Pitari G, Reddy S, Seland Stier P, Takemura T, Tie X. Atmos. Chem. Phys., 2006, 6(7): 1777.

doi: 10.5194/acp-6-1777-2006
[61]
Ginoux P, Prospero J M, Gill T E, Hsu N C, Zhao M. Rev. Geophys., 2012, 50(3): RG3005.
[62]
Gibson E R, Hudson P K, Grassian V H. Geophys. Res. Lett., 2006, 33(13): L13811.

doi: 10.1029/2006GL026386
[63]
Hatch C D, Greenaway A L, Christie M J, Baltrusaitis J. Atmos. Environ., 2014, 87: 26.

doi: 10.1016/j.atmosenv.2013.12.040
[64]
DesprÉs V, Huffman J A, Burrows S M, Hoose C, Safatov A, Buryak G, Fröhlich-Nowoisky J, Elbert W, Andreae M, Pöschl U, Jaenicke R. Tellus B Chem. Phys. Meteorol., 2012, 64(1): 15598.

doi: 10.3402/tellusb.v64i0.15598
[65]
Pope F D. Environ. Res. Lett., 2010, 5(4): 044015.

doi: 10.1088/1748-9326/5/4/044015
[66]
Chen L, Chen Y Z, Chen L L, Gu W J, Peng C, Luo S X, Song W, Wang Z, Tang M J. ACS Earth Space Chem., 2019, 3(12): 2678.

doi: 10.1021/acsearthspacechem.9b00268
[67]
Lee B U, Kim S H, Kim S S. J. Aerosol Sci., 2002, 33(12): 1721.

doi: 10.1016/S0021-8502(02)00114-3
[68]
Cruz C N, Pandis S N. Environ. Sci. Technol., 2000, 34(20): 4313.

doi: 10.1021/es9907109
[69]
Zelenyuk A, Imre D, Cuadra-Rodriguez L A, Ellison B. J. Aerosol Sci., 2007, 38(9): 903.

doi: 10.1016/j.jaerosci.2007.06.006
[70]
Alshawa A, Dopfer O, Harmon C W, Nizkorodov S A, Underwood J S. J. Phys. Chem. A., 2009, 113(26): 7678.

doi: 10.1021/jp809869r pmid: 19298069
[71]
Wang W G, Lei T, Zuend A, Su H, Cheng Y F, Shi Y J, Ge M F, Liu M Y. Atmos. Chem. Phys., 2021, 21(3): 2179.

doi: 10.5194/acp-21-2179-2021
[72]
Dennis-Smither B J, Hanford K L, Kwamena N O A, Miles R E H, Reid J P. J. Phys. Chem. A, 2012, 116(24): 6159.

doi: 10.1021/jp211429f pmid: 22236112
[73]
Slade J H, Thalman R, Wang J, Knopf D A. Atmos. Chem. Phys., 2015, 15(17): 10183.

doi: 10.5194/acp-15-10183-2015
[74]
Schwier A N, Sareen N, Lathem T L, Nenes A, McNeill V F. J. Geophys. Res., 2011, 116(D16): D16202.
[75]
Cheung H H Y, Yeung M C, Li Y J, Lee B P, Chan C K. Aerosol Sci. Technol., 2015, 49(8): 643.

doi: 10.1080/02786826.2015.1058482
[76]
Chen J, Zhao C S, Ma N, Yan P. Atmos. Chem. Phys., 2014, 14(15): 8105.

doi: 10.5194/acp-14-8105-2014
[77]
Ma Y, Li S Z, Zheng J, Khalizov A, Wang X, Wang Z, Zhou Y Y. J. Geophys. Res. Atmos., 2017, 122(17): 9430.

doi: 10.1002/2017JD026583
[78]
Titos G, Lyamani H, Cazorla A, Sorribas M, Foyo-Moreno I, Wiedensohler A, Alados-Arboledas L. Tellus B Chem. Phys. Meteorol., 2014, 66(1): 24536.

doi: 10.3402/tellusb.v66.24536
[79]
Thalman R, Palm B B, Barbosa H M J, Pöhlker M L, Alexander M L, Brito J, Carbone S, Castillo P, Day D A, Kuang chongai, Manzi A, Ng N L, Sedlacek A J, Souza R, Springston S, Watson T, Pöhlker C, Pöschl U, Andreae M O, Artaxo P, Jimenez J L, Martin S T, Wang J. Atmos. Chem. Phys., 2017, 17(19): 11779.

doi: 10.5194/acp-17-11779-2017
[80]
Zhang F, Li Z Q, Li Y N, Sun Y L, Wang Z Z, Li P, Sun L, Wang P C, Cribb M, Zhao C F, Fan T Y, Yang X, Wang Q Q. Atmos. Chem. Phys., 2016, 16(8): 5413.

doi: 10.5194/acp-16-5413-2016
[81]
Wu Y F, Wang X J, Yan P, Zhang L M, Tao J, Liu X Y, Tian P, Han Z W, Zhang R J. Sci. Total. Environ., 2017, 599-600: 76.
[82]
Kuang Y, He Y, Xu W Y, Zhao P S, Cheng Y F, Zhao G, Tao J C, Ma N, Su H, Zhang Y Y, Sun J Y, Cheng P, Yang W D, Zhang S B, Wu C, Sun Y L, Zhao C S. Atmos. Chem. Phys., 2020, 20(2): 865.

doi: 10.5194/acp-20-865-2020
[83]
Yeung M C, Lee B P, Li Y J, Chan C K. J. Geophys. Res. Atmos., 2014, 119(16): 9864.

doi: 10.1002/2013JD021146
[84]
Liu J Y, Zhang F, Xu W Q, Sun Y L, Chen L, Li S Z, Ren J Y, Hu B, Wu H, Zhang R Y. Geophys. Res. Lett., 2021, 48(4): e2020GL091683.
[85]
Hong J, Xu H B, Tan H B, Yin C Q, Hao L Q, Li F, Cai M F, Deng X J, Wang N, Su H, Cheng Y F, Wang L, Petäjä T, Kerminen V M. Atmos. Chem. Phys., 2018, 18(19): 14079.

doi: 10.5194/acp-18-14079-2018
[86]
Atwood S A, Kreidenweis S M, DeMott P J, Petters M D, Cornwell G C, Martin A C, Moore K A. Atmos. Chem. Phys., 2019, 19(10): 6931.

doi: 10.5194/acp-19-6931-2019
[87]
Phillips B N, Royalty T M, Dawson K W, Reed R, Petters M D, Meskhidze N. J. Geophys. Res. Atmos., 2018, 123(3): 1826.

doi: 10.1002/2017JD027702
[88]
Kim G, Cho H J, Seo A, Kim D, Gim Y, Lee B Y, Yoon Y J, Park K. Environ. Sci. Technol., 2015, 49(20): 12024.

doi: 10.1021/acs.est.5b01505
[89]
Ovadnevaite J, Ceburnis D, Canagaratna M, Berresheim H, Bialek J, Martucci G, Worsnop D R, O'Dowd C. J. Geophys. Res., 2012, 117(D16): D16201.
[90]
Herenz P, Wex H, Henning S, Kristensen T B, Rubach F, Roth A, Borrmann S, Bozem H, Schulz H, Stratmann F. Atmos. Chem. Phys., 2018, 18(7): 4477.

doi: 10.5194/acp-18-4477-2018
[91]
Lange R, Dall'Osto M, Wex H, Skov H, Massling A. Geophys. Res. Lett., 2019, 46(20): 11500.

doi: 10.1029/2019GL084142
[92]
Burkart J, Hodshire A L, Mungall E L, Pierce J R, Collins D B, Ladino L A, Lee A K Y, Irish V, Wentzell J J B, Liggio J, Papakyriakou T, Murphy J, Abbatt J. Geophys. Res. Lett., 2017, 44(20): 10725.

doi: 10.1002/2017GL075671
[93]
Kim J, Yoon Y J, Gim Y, Kang H J, Choi J H, Park K T, Lee B Y. Atmos. Chem. Phys., 2017, 17(21): 12985.

doi: 10.5194/acp-17-12985-2017
[94]
Chen H H, Hodshire A L, Ortega J, Greenberg J, McMurry P H, Carlton A G, Pierce J R, Hanson D R, Smith J N. Atmos. Chem. Phys., 2018, 18(1): 311.

doi: 10.5194/acp-18-311-2018
[95]
Shingler T, Crosbie E, Ortega A, Shiraiwa M, Zuend A, Beyersdorf A, Ziemba L, Anderson B, Thornhill L, Perring A E, Schwarz J P, Campazano-Jost P, Day D A, Jimenez J L, Hair J W, Mikoviny T, Wisthaler A, Sorooshian A. J. Geophys. Res. Atmos., 2016, 121(8): 4188.

doi: 10.1002/2015JD024498
[96]
Kecorius S, Ma N, Teich M, van Pinxteren D, Zhang S L, Gröβ J, Spindler G, Müller K, Iinuma Y, Hu M, Herrmann H, Wiedensohler A. Atmos. Environ., 2017, 164: 259.

doi: 10.1016/j.atmosenv.2017.05.023
[97]
Brock C A, Wagner N L, Anderson B E, Attwood A R, Beyersdorf A, Campuzano-Jost P, Carlton A G, Day D A, Diskin G S, Gordon T D, Jimenez J L, Lack D A, Liao J, Markovic M Z, Middlebrook A M, Ng N L, Perring A E, Richardson M S, Schwarz J P, Washenfelder R A, Welti A, Xu L, Ziemba L D, Murphy D M. Atmos. Chem. Phys., 2016, 16(8): 4987.

doi: 10.5194/acp-16-4987-2016
[98]
O'Shea S J, Choularton T W, Flynn M, Bower K N, Gallagher M, Crosier J, Williams P, Crawford I, Fleming Z L, Listowski C, Kirchgaessner A, Ladkin R S, Lachlan-Cope T. Atmos. Chem. Phys., 2017, 17(21): 13049.

doi: 10.5194/acp-17-13049-2017
[99]
Tang M J, Cziczo D J, Grassian V H. Chem. Rev., 2016, 116(7): 4205.

doi: 10.1021/acs.chemrev.5b00529
[100]
Wang X N, Ye X N, Chen H, Chen J M, Yang X, Gross D S. Atmos. Environ., 2014, 95: 318.

doi: 10.1016/j.atmosenv.2014.06.051
[101]
Wang Y Y, Li Z Q, Zhang Y J, Du W, Zhang F, Tan H B, Xu H B, Fan T Y, Jin X A, Fan X X, Dong Z P, Wang Q Y, Sun Y L. Atmos. Chem. Phys., 2018, 18(16): 11739.

doi: 10.5194/acp-18-11739-2018
[102]
Li K N, Ye X N, Pang H W, Lu X H, Chen H, Wang X F, Yang X, Chen J M, Chen Y J. Atmos. Chem. Phys., 2018, 18(20): 15201.

doi: 10.5194/acp-18-15201-2018
[103]
Finlayson-Pitts B J. Chem. Rev., 2003, 103(12): 4801.

pmid: 14664634
[104]
Bertram T H, Thornton J A. Atmos. Chem. Phys., 2009, 9(21): 8351.

doi: 10.5194/acp-9-8351-2009
[105]
Trainic M, Abo Riziq A, Lavi A, Flores J M, Rudich Y. Atmos. Chem. Phys., 2011, 11(18): 9697.

doi: 10.5194/acp-11-9697-2011
[106]
Zhang R Y, Khalizov A F, Pagels J, Zhang D, Xue H X, McMurry P H. PNAS, 2008, 105(30): 10291.

doi: 10.1073/pnas.0804860105
[107]
Chen J, Zhao C S, Ma N, Liu P F, Göbel T, Hallbauer E, Deng Z Z, Ran L, Xu W Y, Liang Z, Liu H J, Yan P, Zhou X J, Wiedensohler A. Atmos. Chem. Phys., 2012, 12(11): 4935.

doi: 10.5194/acp-12-4935-2012
[108]
Liu X G, Gu J W, Li Y P, Cheng Y F, Qu Y, Han T T, Wang J L, Tian H Z, Chen J, Zhang Y H. Atmos. Res., 2013, 132-133: 91.
[109]
Deng H, Tan H B, Li F, Cai M F, Chan P W, Xu H B, Huang X Y, Wu D. Sci. Total. Environ., 2016, 569-570: 1149.
[110]
Stocker T F, Qin D, Plattner G K, Tignor M M B, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M. Climate Change 2013: the Physical Science BASIS. 2014, 1.
[111]
Shrivastava M, Cappa C D, Fan J W, Goldstein A H, Guenther A B, Jimenez J L, Kuang chongai, Laskin A, Martin S T, Ng N L, Petaja T, Pierce J R, Rasch P J, Roldin P, Seinfeld J H, Shilling J, Smith J N, Thornton J A, Volkamer R, Wang J, Worsnop D R, Zaveri R A, Zelenyuk A, Zhang Q. Rev. Geophys., 2017, 55(2): 509.

doi: 10.1002/2016RG000540
[112]
Randles C A. Geophys. Res. Lett., 2004, 31(16): L16108.

doi: 10.1029/2004GL020628
[113]
Zeng C, Liu C, Li J N, Zhu B, Yin Y, Wang Y. J. Geophys. Res. Atmos., 2019, 124(8): 4620.

doi: 10.1029/2018JD029809
[114]
Liu X H, Wang J. Environ. Res. Lett., 2010, 5(4): 044010.

doi: 10.1088/1748-9326/5/4/044010
[115]
Rastak N, Pajunoja A, Acosta Navarro J C, Ma J, Song M, Partridge D G, Kirkevåg A, Leong Y, Hu W W, Taylor N F, Lambe A, Cerully K, Bougiatioti A, Liu P, Krejci R, Petäjä T, Percival C, Davidovits P, Worsnop D R, Ekman A M L, Nenes A, Martin S, Jimenez J L, Collins D R, Topping D O, Bertram A K, Zuend A, Virtanen A, Riipinen I. Geophys. Res. Lett., 2017, 44(10): 5167.

doi: 10.1002/2017GL073056 pmid: 28781391
[116]
Pun V C, Kazemiparkouhi F, Manjourides J, Suh H H. Am. J. Epidemiol., 2017, 186(8): 961.

doi: 10.1093/aje/kwx166
[117]
Pope C A III, Ezzati M, Dockery D W. N. Engl. J. Med., 2009, 360(4): 376.

doi: 10.1056/NEJMsa0805646
[118]
Chen J M, Li C L, Ristovski Z, Milic A, Gu Y T, Islam M S, Wang S X, Hao J M, Zhang H F, He C R, Guo H, Fu H B, Miljevic B, Morawska L, Thai P, Lam Y F, Pereira G, Ding A J, Dumka U C. Sci. Total. Environ., 2017, 579: 1000.

doi: 10.1016/j.scitotenv.2016.11.025
[119]
Löndahl J, Möller W, Pagels J H, Kreyling W G, Swietlicki E, Schmid O. J. Aerosol. Med. Pulm. Drug Deliv., 2014, 27(4): 229.

doi: 10.1089/jamp.2013.1044
[120]
Lu D W, Luo Q, Chen R, Zhuansun Y X, Jiang J, Wang W C, Yang X Z, Zhang L Y, Liu X L, Li F, Liu Q, Jiang G B. Nat. Commun., 2020, 11: 2567.

doi: 10.1038/s41467-020-16427-x
[121]
Winkler-Heil R, Ferron G, Hofmann W. Inhal. Toxicol., 2014, 26(3): 193.

doi: 10.3109/08958378.2013.876468 pmid: 24517842
[1] Jiliang Guo, Jianfei Peng, Ainan Song, Jinsheng Zhang, Zhuofei Du, Hongjun Mao. Studies on the Formation of Secondary Organic Aerosol from Vehicle Exhaust [J]. Progress in Chemistry, 2023, 35(1): 177-188.
[2] Xiangrui Kong, Jing Dou, Shuzhen Chen, Bingbing Wang, Zhijun Wu. Progress of Synchrotron-Based Research on Atmospheric Science [J]. Progress in Chemistry, 2022, 34(4): 963-972.
[3] Huan Song, Qi Zou, Keding Lu. Parameterization and Application of Hydroperoxyl Radicals(HO2) Heterogeneous Uptake Coefficient [J]. Progress in Chemistry, 2021, 33(7): 1175-1187.
[4] Shumin Cheng, Lin Du, Xiuhui Zhang, Maofa Ge. Application of Langmuir Monolayers in the Investigation of Surface Properties of Sea Spray Aerosols [J]. Progress in Chemistry, 2021, 33(10): 1721-1730.
[5] Rongzhi Tang, Hui Wang, Ying Liu, Song Guo. Constituents of Atmospheric Semi-Volatile and Intermediate Volatility Organic Compounds and Their Contribution to Organic Aerosol [J]. Progress in Chemistry, 2019, 31(1): 180-190.
[6] Fangting Gu, Min Hu*, Jing Zheng, Song Guo. Research Progress on Particulate Organonitrates [J]. Progress in Chemistry, 2017, 29(9): 962-969.
[7] Wang Haichao, Lu Keding. Determination and Parameterization of the Heterogeneous Uptake Coefficient of Dinitrogen Pentoxide (N2O5) [J]. Progress in Chemistry, 2016, 28(6): 917-933.
[8] Qi Qian, Zhou Xuehua, Wang Wenxing. Studies on Formation of Aqueous Secondary Organic Aerosols [J]. Progress in Chemistry, 2014, 26(0203): 458-466.
[9] Ma Ye, Chen Jianmin, Wang Lin. Characteristics and Formation Mechanisms of Atmospheric Organosulfates [J]. Progress in Chemistry, 2012, 24(11): 2277-2286.
[10] . Formation Mechanism of Secondary Organic Aerosols from the Reaction of Volatile and Semi-Volatile Compounds [J]. Progress in Chemistry, 2010, 22(04): 727-733.
[11] Wang Zhenya**, |Hao Liqing ,|Zhang Weijun. Gas/Particle Partitioning Theory for Secondary Organic Aerosol [J]. Progress in Chemistry, 2007, 19(01): 93-100.
[12] Wang Zhenya**,Hao Liqing,Zhang Weijun. Chemical Processes on the Formation of Secondary Organic A erosols [J]. Progress in Chemistry, 2005, 17(04): 732-739.