中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (1): 180-190 DOI: 10.7536/PC180431 Previous Articles   Next Articles

• Review •

Constituents of Atmospheric Semi-Volatile and Intermediate Volatility Organic Compounds and Their Contribution to Organic Aerosol

Rongzhi Tang1, Hui Wang1, Ying Liu1, Song Guo1,2,**()   

  1. 1. State Key Joint Laboratory of Environmental Simulation and Pollution Control,College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
    2. Collaborative Innovation Center of Atmospheric Environment and Equipment Technology,Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China;
  • Received: Revised: Online: Published:
  • Contact: Song Guo
  • About author:
    ** Corresponding author e-mail:
  • Supported by:
    The work was supported by the the National Key R&D Program of China(2016YFC0202000); The work was supported by the the National Key R&D Program of China(2017YFC0213000); The National Natural Science Foundation of China(21677002)
Richhtml ( 31 ) PDF ( 1281 ) Cited
Export

EndNote

Ris

BibTeX

This review summarizes the recent advances of semi-volatile/intermediate volatility organic compounds studies, including the measurement techniques, S/IVOCs sources, atmospheric behavior and their contributions to organic aerosol formation. The rapid development of mass spectrometry facilitates the S/IVOCs measurements which include on-line and off-line mass spectrometry. The S/IVOCs off-line measurements provide more information about species at molecular level. However, the offline techniques bear the drawbacks of complex pretreatment and low time resolution, which leads to large uncertainties and the limitation to study the atmospheric chemistry processes. The on-line techniques measure the high time resolution molecular composition and gas-to-particle partitioning, and provide more useful information to elucidate the chemical mechanism of the ambient atmosphere. S/IVOCs could be directly emitted into the atmosphere, or formed by the oxidation of volatile organic compounds (VOCs). The major primary S/IVOCs sources are vehicular emission and biomass burning. Previous studies showed that ratios of S/IVOCs to POA are 2.9~8.5 for gasoline engines, 4.5~20.4 for diesel engines, and 0.83~5.57 for biomass burning. The S/IVOCs oxidation could contribute to 34%~76%, 90%, and 80% of the total SOA from the oxidation of gasoline vehicle exhaust, diesel vehicle exhaust, and biomass burning gases, respectively. Model simulation based on field observations showed that the SOA from the S/IVOCs oxidation could account for 40%~85% of the ambient SOA, suggesting that S/IVOCs are unneglectable SOA precursors. In future studies, new techniques are required to be developed to quantify more S/IVOCs species. Concentrations and speciation of S/IVOCs from different sources as well as ambient atmosphere need to be quantified. The combination of field campaign, lab study and model simulation can provide more insights of mechanism of S/IVOCs oxidation to improve our understanding of SOA formation.

Fig.1 Online measurement techniques of S/IVOCs, example based on results of BEACHON-RoMBAS campaign, showing carbon oxidation state (OSc) versus volatility (c* at 298 K, μg/m3), circle area is proportional to total carbon mass, coloured by analytical technique used[32]. Copyright ? 2017, Springer Nature
Table 1 Analytical Methods of S/IVOCs and Their Advantages and Disadvantages
Table 2 Contributions of S/IVOCs to SOA
[1]
Kanakidou M, Seinfeld J H, Pandis S N, Barnes I, Dentener F J, Facchini M C, Van Dingenen R, Ervens B, Nenes A, Nielsen C J . Atmos. Chem. Phys., 2005,5:1053.
[2]
Guo S, Hu M, Zamora M L, Peng J F, Shang D J, Zheng J, Du Z F, Wu Z J, Shao M, Zeng L M, Molina M J, Zhang R Y . P. Natl. Acad. Sci. U. S. A., 2014,111:17373.
[3]
Hallquist M, Wenger J C, Baltensperger U, Rudich Y, Simpson D, Claeys M, Dommen J, Donahue N M, George C, Goldstein A H, Hamilton J F, Herrmann H, Hoffmann T, Iinuma Y, Jang M, Jenkin M E, Jimenez J L, Kiendler-Scharr A, Maenhaut W, McFiggans G, Mentel T F, Monod A, Prevot A S H, Seinfeld J H, Surratt J D, Szmigielski R, Wildt J . Atmos. Chem. Phys., 2009,9:5155.
[4]
Jimenez J L, Canagaratna M R, Donahue N M, Prevot A S H, Zhang Q, Kroll J H, DeCarlo P F, Allan J D, Coe H, Ng N L, Aiken A C, Docherty K S, Ulbrich I M, Grieshop A P, Robinson, A L, Duplissy J, Smith J D, Wilson K R, Lanz V A; Hueglin C, Sun Y L, Tian J, Laaksonen A, Raatikainen T, Rautiainen J, Vaattovaara P, Ehn M, Kulmala M, Tomlinson J M, Collins D R, Cubison M J, Dunlea E J . Science, 2009,326:1525.
[5]
Ayres B R, Allen H M, Draper D C, Brown S S, Wild R J, Jimenez J L, Day D A, Campuzano-Jost P, Hu W, DeGouw J, Koss A, Cohen R C, Duffey K C, Romer P, Baumann K, Edgerton E, Takahama S, Thornton J A, Lee B H, Lopez-Hilfiker F D, Mohr C, Wennberg P O, Nguyen T B, Teng A, Goldstein A H, Olson K, Fry J L . Atmos. Chem. Phys., 2015,15:13377.
[6]
Guo S, Hu M, Guo Q F, Zhang X, Zheng M, Zheng J, Chang C C, Schauer J J, Zhang R Y . Environ. Sci. Technol., 2012,46:9846.
[7]
Guo S, Hu M, Wang Z B, Slanina J, Zhao Y L . Atmos. Chem. Phys., 2010,10:947.
[8]
Kroll J H, Seinfeld J H . Atmos. Environ., 2008,42:3593.
[9]
郭松 (Guo S), 胡敏 (Hu M), 尚冬杰 (Shang D J), 郭庆丰 (Guo Q F), 胡伟伟 (Hu W W) . 化学学报( Acta Chimca Sinica), 2014,72:145
[10]
郭松 ( Guo S), 胡敏 (Hu M), 郭庆丰 (Guo Q F), 尚冬杰 (Shang D J) . 化学学报( Acta Chimca Sinica), 2014,72:658.
[11]
Ma P K, Zhao Y L, Robinson A L, Worton D R, Goldstein A H, Ortega A M, Jimenez J L, Zotter P, Prévôt A S H, Szidat S . Atmos. Chem. Phys., 2017,17:9237.
[12]
Volkamer R, Jimenez J L, San M F, Dzepina K, Zhang Q, Salcedo D, Molina L T, Worsnop D R, Molina M J . Geophys. Res. Let., 2006,33:L17811.
[13]
Heald C L, Coe H, Jimenez J L, Weber R J, Bahreini R, Middlebrook A M, Russell L M, Jolleys M, Fu T MA, Allan J D, Bower K N, Capes G, Crosier J, Morgan W T, Robinson N H, Williams P I, Cubison M J, DeCarlo P F, Dunlea E J . Atmos. Chem. Phys., 2011,11:12673.
[14]
Ehn M, Thornton J A, Kleist E, Sipila M, Junninen H, Pullinen I, Springer M, Rubach F, Tillmann R, Lee B, Lopez-Hilfiker F, Andres S, Acir I H, Rissanen M, Jokinen T, Schobesberger S, Kangasluoma J, Kontkanen J, Nieminen T, Kurten T, Nielsen L B, Jorgensen S, Kjaergaard H G, Canagaratna M, Dal M M, Berndt T, Petaja T, Wahner A, Kerminen V M, Kulmala M, Worsnop D R, Wildt J, Mentel T F . Nature, 2014,506:476.
[15]
Riccobono F, Schobesberger S, Scott C E, Dommen J, Ortega I K, Rondo L, Almeida J, Amorim A, Bianchi F, Breitenlechner M, David A, Downard A, Dunne E M, Duplissy J, Ehrhart S, Flagan R C, Franchin A, Hansel A, Junninen H, Kajos M, Keskinen H, Kupc A, Kurten A, Kvashin A N, Laaksonen A, Lehtipalo K, Makhmutov V, Mathot S, Nieminen T, Onnela A, Petaja T, Praplan A P, Santos F D, Schallhart S, Seinfeld J H, Sipila M, Spracklen D V, Stozhkov Y, Stratmann F, Tome A, Tsagkogeorgas G, Vaattovaara P, Viisanen Y, Vrtala A, Wagner P E, Weingartner E, Wex H, Wimmer D, Carslaw K S, Curtius J, Donahue N M, Kirkby J, Kulmala M, Worsnop D R, Baltensperger U . Science, 2014,344:717.
[16]
Bianchi F, Tröstl J, Junninen H, Frege C, Henne S, Hoyle C R, Molteni U, Herrmann E, Adamov A, Bukowiecki N . Science, 2016,352:1109.
[17]
Trostl J, Chuang W K, Gordon H, Heinritzi M, Yan C, Molteni U, Ahlm L, Frege C, Bianchi F, Wagner R, Simon M, Lehtipalo K, Williamson C, Craven J S, Duplissy J, Adamov A, Almeida J, Bernhammer A K, Breitenlechner M, Brilke S, Dias A, Ehrhart S, Flagan R C, Franchin A, Fuchs C, Guida R, Gysel M, Hansel A, Hoyle C R, Jokinen T, Junninen H, Kangasluoma J, Keskinen H, Kim J, Krapf M, Kurten A, Laaksonen A, Lawler M, Leiminger M, Mathot S, Mohler O, Nieminen T, Onnela A, Petaja T, Piel F M, Miettinen P, Rissanen M P, Rondo L, Sarnela N, Schobesberger S, Sengupta K, Sipila M, Smith J N, Steiner G, Tome A, Virtanen A, Wagner A C, Weingartner E, Wimmer D, Winkler P M, Ye P L, Carslaw K S, Curtius J, Dommen J, Kirkby J, Kulmala M, Riipinen I, Worsnop D R. Donahue N M, Baltensperger U . Nature, 2016,533:527.
[18]
Kalberer M, Paulsen D, Sax M, Steinbacher M, Dommen J, Prevot A S H, Fisseha R, Weingartner E, Frankevich V, Zenobi R . Science, 2004,303:1659.
[19]
Barsanti K C, Pankow J F . Atmos. Environ., 2005,39:6597.
[20]
Song C, Zaveri R A, Alexander M L, Thornton J A, Madronich S, Ortega J V, Zelenyuk A, Yu X Y, Laskin A, Maughan D A . Geophys. Res. Let., 2007,34:20.
[21]
Ervens B, Carlton A G, Turpin B J, Altieri K E, Kreidenweis S M, Feingold G . Geophys. Res. Let., 2008,35:2.
[22]
Ng N L, Kroll J H, Chan A W H, Chhabra P S, Flagan R C, Seinfeld J H . Atmos. Chem. Phys., 2007,7:3909.
[23]
Robinson A L, Donahue N M, Shrivastava M K, Weitkamp E A, Sage A M, Grieshop A P, Lane T E, Pierce J R, Pandis S N . Science, 2007,315:1259.
[24]
Donahue N M, Robinson A L, Stanier C O, Pandis S N . Environ. Sci. Technol., 2006,40:2635.
[25]
Dzepina K, Volkamer R M, Madronich S, Tulet P, Ulbrich I M, Zhang Q, Cappa C D, Ziemann P J, Jimnez J L . Atmos. Chem. Phys., 2009,9:5681.
[26]
Spracklen D V, Jimnez J L, Carslaw K S, Worsnop D R, Evans M J, Zhang Q, Canagaratna M R, Allan J, Coe H, McFiggans G, Rap A, Forster P . Atmos. Chem. Phys., 2011,11:12109.
[27]
Bergström R, Denier van der Gon H A C, Prévôt A S H, Yttri K E, Simpson D . Atmos. Chem. Phys., 2012,12:8499.
[28]
Hayes P L, Carlton A G, Baker K R, Ahmadov R, Washenfelder R A, Alvarez S, Rappenglück B, Gilman J B, Kuster W C, de Gouw J A, Zotter P, Prévôt A S H, Szidat S, Kleindienst T E, Offenberg J H, Ma P K, Jimnez J L . Atmos. Chem. Phys., 2015,15:5773.
[29]
Woody M C, West J J, Jather S H, Robinson A L, Arunachalam S . Atmos. Chem. Phys., 2015,15:6929.
[30]
Bruns E A, Haddad I E, Slowik J G, Kilic D, Klein F, Baltensperger U, Prévôt A S H . Sci. Rep., 2016,6:27881.
[31]
Jathar S H, Woody M, Pye H O T, Baker K R, Robinson A L . Atmos. Chem. Phys., 2017,17:4305.
[32]
Hunter J F, Day D A, Palm B B, Yatavelli R L N, Chan A W H, Kaser L, Cappellin L, Hayes P L, Cross E S, Carrasquillo A J . Emergence, 2017,8:21.
[33]
Król S, Zabiegała B, Namiesnik J . Anal. Bioanal. Chem., 2011,400:751.
[34]
Cheng Y, He K B, Duan F K, Zheng M, Ma Y L, Tan J H . Environ Int., 2009,35:674.
[35]
Cui Y, Wang J, Li D H . Anal. Chim. Acta., 2013,799:8.
[36]
Melymuk L, Bohlin P, Sanka O, Pozo K, Klanova J . Environ. Sci. Technol., 2014,48:14077.
[37]
Cross E S, Hunter J F, Carrasquillo A J, Franklin J P, Herndon S C, Jayne J T, Worsnop D R, Miake-Lye R C, Kroll J H . Atmos. Chem. Phys., 2013,13:7845.
[38]
Canagaratna M R, Jayne J T, Jimenez J L, Allan J D, Alfarra M R, Zhang Q, Onasch T B, Drewnick F, Coe H, Middlebrook A . Mass. Spectrom. Rev., 2007,26:185.
[39]
Huffman J A, Ziemann P J, Jaynek J T, Worsnop D R, Jimenez J L . Aerosol. Sci. Tech., 2008,42:395.
[40]
Holzinger R, Williams J, Herrmann F, Lelieveld J, Donahue N M, Röckmann T . Atmos. Chem. Phys., 2010,10:2257.
[41]
Eichler P, Müller M, D’Anna B, Wisthaler A . Atmos. Meas. Tech., 2015,8:1353.
[42]
Yatavelli R L N, Thornton J A . Aerosol. Sci. Tech., 2010,44:61.
[43]
Lopez-Hilfiker F D, Mohr C, Ehn M, Rubach F, Kleist E, Wildt J, Mentel T F, Lutz A, Hallquist M, Worsnop D, Thornton J A . Atmos. Meas. Tech., 2014,7:983.
[44]
Zhao Y L, Kreisberg N M, Worton D R, Teng A P, Hering S V, Goldstein A H . Aerosol. Sci. Technol., 2013,47:258.
[45]
Williams B J, Goldstein A H, Kreisberg N M, Hering S V . P.Natl. Acad. Sci. USA., 2009,107:15.
[46]
Pye H O T, Seinfeld J H . Atmos. Chem. Phys., 2010,10:4377.
[47]
Shrivastava M, Easter R C, Liu X H, Zelenyuk A, Singh B, Zhang K, Ma P L, Chand D, Ghan S, Jimenez J L . J. Geophys. Res., 2015,120:4169.
[48]
Hodzic A, Kasibhatla P S Jo D S, Cappa C D, Jimenez J L. Madronich S.; Park R . J. Atmos. Chem. Phys 2016,16, 7917.
[49]
Gordon T. D.; Presto A. A.; Nguyen N. T.; Robertson W. H, Na K, Sahay K N, Zhang M, Maddox C, Rieger P, Chattopadhyay S, Maldonado H, Maricq M M Robinson A L . Atmos. Chem. Phys., 2014,14:4643.
[50]
May A A, Nguyen N T, Presto A A, Gordon T D, Lipsky E M, Karve M, Gutierrez A, Robertson W H, Zhang M, Brandow C, Chang O, Chen S Y, Cicero-Fernandez P, Dinkins L, Fuentes M, Huang S M, Ling R, Long J, Maddox C, Massetti J, McCauley E, Miguel A, Na K, Ong R, Pang Y B, Rieger P, Sax T, Truong T, Vo T, Chattopadhyay S, Maldonado H, Maricq M M Robinson A L . Atmos. Environ., 2014,88:247.
[51]
Gentner D R, Worton D R, Isaacman G, Davis L C, Dallmann T R, Wood E C, Herndon S C, Goldstein A H, Harley R A . Environ. Sci. Technol., 2013,47:11837.
[52]
Zhao Y L, Hennigan C J, May A A, Tkacik D S. De Gouw J A, Gilman J B, Kuster W C, Borbon A, Robinson A L, . Environ. Sci. Technol., 2014,48:13743.
[53]
Zhao Y L, Nguyen N T, Presto A A, Hennigan Christopher J, May A A, Robinson A L, . Enviro. Sci.Technol, 2015,49:11516.
[54]
Zhao Y L, Nguyen N T, Presto A A, Hennigan Christopher J, May A A, Robinson A L . Environ. Sci. Technol., 2016,50:4554.
[55]
Zhao Y L, Saleh R, Saliba G, Presto A A, Gordon T D, Drozd G T, Goldstein A H, Donahue N M, Robinson A L . Proc. Natl. Acad. Sci. USA., 2017,114:6984.
[56]
Schauer J J, Kleeman M J, Cass G R, Simoneit B R T . Environ. Sci. Technol., 2002,36:1169.
[57]
Zhao B, Wang S X, Donahue N M, Jathar S H, Huang X F, Wu W J, Hao J M, Robinson A L . Sci Rep., 2016,6.
[58]
Gaines L, Vyas A, Anderson J . Transportation Research Record: Journal of the Transportation Research Board, 2006,1983:91.
[59]
Bond T C, Streets D G, Yarber K F, Nelson S M, Woo J H, Klimont Z J . Geophys. Res., 2004,109.
[60]
Stockwell C E, Veres P R, Williams J, Yokelson R J . Atmos. Chem. Phys., 2015,15:845.
[61]
Yokelson R J, Burling I R, Gilman J B, Warneke C, Stockwell C E, De Gouw J, Akagi S K, Urbanski S P, Veres P, Roberts J M, Kuster W C, Reardon J, Griffith D W T, Johnson T J, Hosseini S, Miller J W, Cocker D R, Jung H, Weise D R . Atmos. Chem. Phys., 2013,13:89.
[62]
Hatch L E, Yokelson R J, Stockwell C E, Veres P R, Simpson I J, Blake D R, Orlando J J, Barsanti K C . Atmos. Chem. Phys., 2017,17:1471.
[63]
Pankow James F . Atmos. Environ., 1994,28:185.
[64]
Grieshop A P, Logue J M, Donahue N M, Robinson A L . Atmos. Chem. Phys., 2009,9:1263.
[65]
Shrivastava M K, Lane T E, Donahue N M, Pandis S N, Robinson A L . J. Geophys. Res., 2008,113.
[66]
Hodzic A, Jimenez J L, Madronich S, Canagaratna M R, DeCarlo P, Kleinman L, Fast J . Atmos. Chem. Phys., 2010,10:5491.
[67]
Kim S, Wolfe G M, Mauldin L, Cantrell C, Guenther A, Karl T, Turnipseed A, Greenberg J, Hall S R, Ullmann K . Atmos. Chem. Phys., 2013,13:2031.
[68]
Nakashima Y, Kato S, Greenberg J, Harley P, Karl T, Turnipseed A, Apel E, Guenther A, Mith J, Kajii Y . Atmos.Environ, 2014,85:1.
[69]
Jathar S H, Gordon T D, Hennigan C J, Pye H O T, Pouliot G, Adams P J, Donahue N M, Robinson A L . Proc. Natl. Acad. Sci. USA., 2014,111:10473.
[70]
Gentner D R, Jathar S H, Gordon T D, Bahreini R, Day D A, El Haddad I, Hayes P L, Pieber S M, Platt S M, De Gouw J, Goldstein A H, Harley R A, Jimenez J L, Prevot A S H, Robinson A L . Environ. Sci. Technol., 2017,51:1074.
[1] Shumin Cheng, Lin Du, Xiuhui Zhang, Maofa Ge. Application of Langmuir Monolayers in the Investigation of Surface Properties of Sea Spray Aerosols [J]. Progress in Chemistry, 2021, 33(10): 1721-1730.
[2] Fangting Gu, Min Hu*, Jing Zheng, Song Guo. Research Progress on Particulate Organonitrates [J]. Progress in Chemistry, 2017, 29(9): 962-969.
[3] Wang Haichao, Chen Jun, Lu Keding. Measurement of NO3 and N2O5 in the Troposphere [J]. Progress in Chemistry, 2015, 27(7): 963-976.
[4] Li Xiaoqian, Lu Keding, Wei Yongjie, Tang Xiaoyan. Technique Progress and Chemical Mechanism Research of Tropospheric Peroxy Radical in Field Measurement [J]. Progress in Chemistry, 2014, 26(04): 682-694.
[5] Qi Qian, Zhou Xuehua, Wang Wenxing. Studies on Formation of Aqueous Secondary Organic Aerosols [J]. Progress in Chemistry, 2014, 26(0203): 458-466.
[6] Tian Yu, Zhu Caizhen, Gong Jinghua, Ma Jinghong, Yang Shuguang, Xu Jian. In Situ Synchrotron Radiation X-Ray Scattering and Diffraction Measurement Studies on Structure and Morphology of Fibers [J]. Progress in Chemistry, 2013, 25(10): 1751-1762.
[7] . Formation Mechanism of Secondary Organic Aerosols from the Reaction of Volatile and Semi-Volatile Compounds [J]. Progress in Chemistry, 2010, 22(04): 727-733.
[8] . Observations of HOx Radical in Field Studies and the Analysisi of Its Chemical Mechanism [J]. Progress in Chemistry, 2010, 22(0203): 500-514.
[9] Long Jia1,2,Maofa Ge2**,Guoshun Zhuang1,Li Yao2,Dianxun Wang2. Advances in Tropospheric Night-time Chemistry [J]. Progress in Chemistry, 2006, 18(0708): 1034-1040.