中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (1): 177-188 DOI: 10.7536/PC220605 Previous Articles   

• Review •

Studies on the Formation of Secondary Organic Aerosol from Vehicle Exhaust

Jiliang Guo, Jianfei Peng(), Ainan Song, Jinsheng Zhang, Zhuofei Du(), Hongjun Mao   

  1. Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: pengjianfei@nankai.edu.cn (Jianfei Peng); duzhuofei11235@nankai.edu.cn (Zhuofei Du)
  • Supported by:
    National Natural Science Foundation of China(42175123); National Natural Science Foundation of China(42107125); Natural Science Foundation of Tianjin(20JCYBJC01270); Tianjin Research Innovation Project for Postgraduate Students(2021YJSS013)
Richhtml ( 21 ) PDF ( 461 ) Cited
Export

EndNote

Ris

BibTeX

Secondary organic aerosol (SOA) is an important component of fine particulate matter (PM2.5), which significantly impacts on atmospheric visibility, human health and regional/global climate change. In urban air, high level of SOA is formed from the atmospheric oxidation of gaseous organic precursors emitted from vehicles, becoming an important factor for the decline of urban air quality. This review summarizes recent studies on the SOA formation from vehicle exhaust, focusing on the identification of key precursors and their emission characteristics, as well as SOA formation, evolution, and influencing factors. In addition, SOA production factors are compared among studies. New measuring techniques, new mechanisms and new parametric method will be the key research direction in the future.

Contents

1 Introduction

2 Identification of SOA precursors from vehicle exhaust and their emission characteristics

2.1 Measurement methods

2.2 Emission characteristics and influencing factors

3 Laboratory simulation of SOA formation from vehicle exhaust

3.1 Smog chamber and flow tube experiments

3.2 Influencing factors of SOA formation

3.3 Evolution and product composition of SOA

3.4 Model simulation of SOA formation

4 Conclusion and prospect

Fig. 1 Maps of predicted ground-level OA concentrations for four PMCAMx simulations:(A) A traditional model with nonvolatile POA emissions, (B) POA emissions are volatile but not reactive, (C) POA are also aged by OH, (D) Add additional S/IVOCs emissions to the model which create a considerable amount of regional SOA[17]. Copyright ? 2007, The American Association for the Advancement of Science.
Table 1 IVOCs emission factors of vehicle exhaust
Fig. 2 SOA production factor of vehicle exhaust in China and US. a) SOA production factor of gasoline vehicle exhaust with different model years or emission standards, OH exposure = (3~5)×106 molecules cm-3·h, b)SOA production factor of heavy or medium duty diesel vehicle exhaust, OH exposure= 2×106~2×107 molecules cm-3·h.
Fig. 3 a) Fractions of entire organic signals at m/z 43 and m/z 44(f43 vs f44)from exhaust derived SOA as well as an Ng triangle plot[83]; b) Van-Krevelen diagram of SOA from vehicle exhaust[16,67,80,82]
[1]
Kanakidou M, Seinfeld J H, Pandis S N, Barnes I, Dentener F J, Facchini M C, Van Dingenen R, Ervens B, Nenes A, Nielsen C J, Swietlicki E, Putaud J P, Balkanski Y, Fuzzi S, Horth J, Moortgat G K, Winterhalter R, Myhre C E L, Tsigaridis K, Vignati E, Stephanou E G, Wilson J. Atmos. Chem. Phys., 2005, 5: 1053.

doi: 10.5194/acp-5-1053-2005
[2]
Jimenez J L, Canagaratna M R, Donahue N M, Prevot A S H, Zhang Q, Kroll J H, DeCarlo P F, Allan J D, Coe H, Ng N L, Aiken A C, Docherty K S, Ulbrich I M, Grieshop A P, Robinson A L, Duplissy J, Smith J D, Wilson K R, Lanz V A, Hueglin C, Sun Y L, Tian J, Laaksonen A, Raatikainen T, Rautiainen J, Vaattovaara P, Ehn M, Kulmala M, Tomlinson J M, Collins D R, Cubison M J, Dunlea J, Huffman J A, Onasch T B, Alfarra M R, Williams P I, Bower K, Kondo Y, Schneider J, Drewnick F, Borrmann S, Weimer S, Demerjian K, Salcedo D, Cottrell L, Griffin R, Takami A, Miyoshi T, Hatakeyama S, Shimono A, Sun J Y, Zhang Y M, Dzepina K, Kimmel J R, Sueper D, Jayne J T, Herndon S C, Trimborn A M, Williams L R, Wood E C, Middlebrook A M, Kolb C E, Baltensperger U, Worsnop D R. Science, 2009, 326(5959): 1525.

doi: 10.1126/science.1180353 pmid: 20007897
[3]
Wang Y H, Clusius P, Yan C, Dallenbach K, Yin R J, Wang M Y, He X C, Chu B W, Lu Y Q, Dada L, Kangasluoma J, Rantala P, Deng C J, Lin Z H, Wang W G, Yao L, Fan X L, Du W, Cai J, Heikkinen L, Tham Y J, Zha Q Z, Ling Z H, Junninen H, Petaja T, Ge M, Wang Y S, He H, Worsnop D R, Kerminen V-M, Bianchi F, Wang L, Jiang J K, Liu Y C, Boy M, Ehn M, Donahue N M, Kulmala M. Environ. Sci. Technol., 2022, 56(2): 770.

doi: 10.1021/acs.est.1c05191
[4]
Xing L, Wu J R, Elser M, Tong S R, Liu S X, Li X, Liu L, Cao J J, Zhou J M, El-Haddad I, Huang R J, Ge M, Tie X X, Prevot A S H, Li G H. Atmos. Chem. Phys., 2019, 19(4): 2343.

doi: 10.5194/acp-19-2343-2019
[5]
Han T T, Liu X G, Zhang Y H, Qu Y, Zeng L M, Hu M, Zhu T. J. Environ. Sci., 2015, 31: 51.

doi: 10.1016/j.jes.2014.08.026
[6]
Tong Y D, Pospisilova V, Qi L, Duan J, Gu Y F, Kumar V, Rai P, Stefenelli G, Wang L W, Wang Y, Zhong H B, Baltensperger U, Cao J J, Huang R J, Prevot A S H, Slowik J G. Atmos. Chem. Phys., 2021, 21(12): 9859.

doi: 10.5194/acp-21-9859-2021
[7]
Zheng Y, Chen Q, Cheng X, Mohr C, Cai J, Huang W, Shrivastava M, Ye P, Fu P, Shi X, Ge Y, Liao K, Miao R, Qiu X, Koenig T K, Chen S. Environ. Sci. Technol., 2021, 55(23): 15680.

doi: 10.1021/acs.est.1c04255
[8]
Roldin P, Ehn M, KurtÉn T, Olenius T, Rissanen M P, Sarnela N, Elm J, Rantala P, Hao L Q, Hyttinen N, Heikkinen L, Worsnop D R, Pichelstorfer L, Xavier C, Clusius P, Öström E, Petäjä T, Kulmala M, Vehkamäki H, Virtanen A, Riipinen I, Boy M. Nat. Commun., 2019, 10: 4370.

doi: 10.1038/s41467-019-12338-8
[9]
Zhao D F, Buchholz A, Tillmann R, Kleist E, Wu C, Rubach F, Kiendler-Scharr A, Rudich Y, Wildt J, Mentel T F. Nat. Commun., 2017, 8: 14067.

doi: 10.1038/ncomms14067 pmid: 28218253
[10]
Jokinen T, Berndt T, Makkonen R, Kerminen V-M, Junninen H, Paasonen P, Stratmann F, Herrmann H, Guenther A B, Worsnop D R, Kulmala M, Ehn M, Sipila M. Proc. Natl. Acad. Sci. U. S. A., 2015, 112(23): 7123.

doi: 10.1073/pnas.1423977112
[11]
Huang C, Wang H L, Li L, Wang Q, Lu Q, de Gouw J A, Zhou M, Jing S A, Lu J, Chen C H. Atmos. Chem. Phys., 2015, 15(19): 11081.

doi: 10.5194/acp-15-11081-2015
[12]
Odum J R, Jungkamp T P W, Griffin R J, Forstner H J L, Flagan R C, Seinfeld J H. Environ. Sci. Technol., 1997, 31(7): 1890.

doi: 10.1021/es960535l
[13]
Peng J F, Hu M, Du Z F, Wang Y H, Zheng J, Zhang W B, Yang Y D, Qin Y H, Zheng R, Xiao Y, Wu Y S, Lu S H, Wu Z J, Guo S, Mao H J, Shuai S J. Atmos. Chem. Phys., 2017, 17(17): 10743.

doi: 10.5194/acp-17-10743-2017
[14]
Gordon T D, Presto A A, May A A, Nguyen N T, Lipsky E M, Donahue N M, Gutierrez A, Zhang M, Maddox C, Rieger P, Chattopadhyay S, Maldonado H, Maricq M M, Robinson A L. Atmos. Chem. Phys., 2014, 14(9): 4661.

doi: 10.5194/acp-14-4661-2014
[15]
Liu T, Wang X, Deng W, Hu Q, Ding X, Zhang Y, He Q, Zhang Z, Lü S, Bi X, Chen J, Yu J. Atmos. Chem. Phys., 2015, 15(15): 9049.

doi: 10.5194/acp-15-9049-2015
[16]
Nordin E Z, Eriksson A C, Roldin P, Nilsson P T, Carlsson J E, Kajos M K, HellÉn H, Wittbom C, Rissler J, Löndahl J, Swietlicki E, Svenningsson B, Bohgard M, Kulmala M, Hallquist M, Pagels J H. Atmos. Chem. Phys., 2013, 13(12): 6101.

doi: 10.5194/acp-13-6101-2013
[17]
Robinson A L, Donahue N M, Shrivastava M K, Weitkamp E A, Sage A M, Grieshop A P, Lane T E, Pierce J R, Pandis S N. Science. 2007, 315(5816): 1259.

doi: 10.1126/science.1133061 pmid: 17332409
[18]
Weitkamp E A, Sage A M, Pierce J R, Donahue N M, Robinson A L. Environ. Sci. Technol., 2007, 41(20): 6969.

pmid: 17993136
[19]
Deng W, Hu Q H, Liu T Y, Wang X M, Zhang Y L, Song W, Sun Y L, Bi X H, Yu J Z, Yang W G, Huang X Y, Zhang Z, Huang Z H, He Q F, Mellouki A, George C. Sci. Total Environ., 2017, 593/594: 462.

doi: 10.1016/j.scitotenv.2017.03.088
[20]
Donahue N M, Robinson A L, Stanier C O, Pandis S N. Environ. Sci. Technol., 2006, 40(8): 2635.

doi: 10.1021/es052297c pmid: 16683603
[21]
Zhao Y L, Hennigan C J, May A A, Tkacik D S, de Gouw J A, Gilman J B, Kuster W C, Borbon A, Robinson A L. Environ. Sci. Technol., 2014, 48(23): 13743.

doi: 10.1021/es5035188
[22]
Zhu W F, Guo S, Zhang Z R, Wang H, Yu Y, Chen Z, Shen R Z, Tan R, Song K, Liu K F, Tang R Z, Liu Y, Lou S R, Li Y J, Zhang W B, Zhang Z, Shuai S J, Xu H M, Li S D, Chen Y F, Hu M, Canonaco F, Prevot A S H. Atmos. Chem. Phys., 2021, 21(19): 15065.

doi: 10.5194/acp-21-15065-2021
[23]
Tang R, Lu Q, Guo S, Wang H, Song K, Yu Y, Tan R, Liu K, Shen R, Chen S, Zeng L, Jorga S D, Zhang Z, Zhang W, Shuai S, Robinson A L. Atmos. Chem. Phys., 2021, 21(4): 2569.

doi: 10.5194/acp-21-2569-2021
[24]
Presto A A, Miracolo M A, Donahue N M, Robinson A L. Environ. Sci. Technol., 2010, 44(6): 2029.

doi: 10.1021/es903712r
[25]
Tkacik D S, Presto A A, Donahue N M, Robinson A L. Environ. Sci. Technol., 2012, 46(16): 8773.

doi: 10.1021/es301112c
[26]
Gordon T D, Presto A A, Nguyen N T, Robertson W H, Na K, Sahay K N, Zhang M, Maddox C, Rieger P, Chattopadhyay S, Maldonado H, Maricq M M, Robinson A L. Atmos. Chem. Phys., 2014, 14(9): 4643.

doi: 10.5194/acp-14-4643-2014
[27]
Zhao Y L, Nguyen N T, Presto A A, Hennigan C J, May A A, Robinson A L. Environ. Sci. Technol., 2016, 50(8): 4554.

doi: 10.1021/acs.est.5b06247
[28]
Liao K R, Chen Q, Liu Y, Li Y J, Lambe A T, Zhu T, Huang R J, Zheng Y, Cheng X, Miao R Q, Huang G C, Khuzestani R B, Jia T J. Environ. Sci. Technol., 2021, 55(11): 7276.

doi: 10.1021/acs.est.0c08591
[29]
Tang R Z, Wang H, Liu Y, Guo S. Prog. Chem., 2019, 31(1): 180.
[30]
Wen S, Feng Y L, Yu Y X, Bi X H, Wang X M, Sheng G Y, Fu J M, Peng P A. Environ. Sci. Technol., 2005, 39(16): 6202.

pmid: 16173582
[31]
Aiello M, McLaren R. Environ. Sci. Technol., 2009, 43(23): 8901.

doi: 10.1021/es901892f pmid: 19943664
[32]
Fang H, Huang X Q, Zhang Y L, Pei C L, Huang Z Z, Wang Y J, Chen Y N, Yan J H, Zeng J Q, Xiao S X, Luo S L, Li S, Wang J, Zhu M, Fu X W, Wu Z F, Zhang R Q, Song W, Zhang G H, Hu W W, Tang M J, Ding X, Bi X H, Wang X M. Atmos. Chem. Phys., 2021, 21(13): 10005.

doi: 10.5194/acp-21-10005-2021
[33]
Liu Y X, Li Y J, Yuan Z B, Wang H L, Sha Q E, Lou S R, Liu Y H, Hao Y Q, Duan L J, Ye P L, Zheng J Y, Yuan B, Shao M. Environ. Pollut., 2021, 281: 117020.

doi: 10.1016/j.envpol.2021.117020
[34]
Alam M S, Harrison R M. Chem. Sci., 2016, 7(7): 3968.

doi: 10.1039/C6SC00465B
[35]
Worton D R, Decker M, Isaacman-Van Wertz G, Chan A W H, Wilson K R, Goldstein A H. Analyst., 2017, 142(13): 2395.

doi: 10.1039/c7an00625j pmid: 28555694
[36]
Alam M S, Zeraati-Rezaei S, Xu H M, Harrison R M. Environ. Sci. Technol., 2019, 53(19): 11345.

doi: 10.1021/acs.est.9b03053
[37]
Wang C M, Yuan B, Wu C H, Wang S H, Qi J P, Wang B L, Wang Z L, Hu W W, Chen W, Ye C S, Wang W J, Sun Y L, Wang C, Huang S, Song W, Wang X M, Yang S X, Zhang S Y, Xu W Y, Ma N, Zhang Z Y, Jiang B, Su H, Cheng Y F, Wang X M, Shao M. Atmos. Chem. Phys., 2020, 20(22): 14123.

doi: 10.5194/acp-20-14123-2020
[38]
Zhang Z N, Man H Y, Zhao J C, Jiang Y H, Zeng M, Cai Z T, Huang C, Huang W D, Zhao H G, Jing S G, Shi X, He K B, Liu H. J. Hazard. Mater., 2022, 435: 128979.

doi: 10.1016/j.jhazmat.2022.128979
[39]
Wang Y W, Mehra A, Krechmer J E, Yang G, Hu X Y, Lu Y Q, Lambe A, Canagaratna M, Chen J M, Worsnop D, Coe H, Wang L. Atmos. Chem. Phys., 2020, 20(15): 9563.

doi: 10.5194/acp-20-9563-2020
[40]
Voliotis A, Wang Y, Shao Y Q, Du M, Bannan T J, Percival C J, Pandis S N, Alfarra M R, McFiggans G. Atmos. Chem. Phys., 2021, 21(18): 14251.

doi: 10.5194/acp-21-14251-2021
[41]
Gentner D R, Isaacman G, Worton D R, Chan A W H, Dallmann T R, Davis L, Liu S, Day D A, Russell L M, Wilson K R, Weber R, Guha A, Harley R A, Goldstein A H. Proc. Natl. Acad. Sci. U. S. A., 2012, 109(45): 18318.

doi: 10.1073/pnas.1212272109
[42]
Liang Z R, Yu Z H, Chen L F. Fuel, 2022, 310: 122409.

doi: 10.1016/j.fuel.2021.122409
[43]
Zhao Y L, Nguyen N T, Presto A A, Hennigan C J, May A A, Robinson A L. Environ. Sci. Technol., 2015, 49(19): 11516.

doi: 10.1021/acs.est.5b02841
[44]
Qi L J, Zhao J C, Li Q W, Su S, Lai Y T, Deng F Y, Man H Y, Wang X T, Shen X E, Lin Y M, Ding Y, Liu H. Environ. Pollut., 2021, 290: 117984.

doi: 10.1016/j.envpol.2021.117984
[45]
Liang Z R, Salehi F, Yu Z H, Wang C M, Chen L F. Fuel. 2021, 284: 118918.

doi: 10.1016/j.fuel.2020.118918
[46]
Cross E S, Sappok A G, Wong V W, Kroll J H. Environ. Sci. Technol., 2015, 49(22): 13483.

doi: 10.1021/acs.est.5b03954 pmid: 26461982
[47]
Zhao Y L, Lambe A T, Saleh R, Saliba G, Robinson A L. Environ. Sci. Technol., 2018, 52(3): 1253.

doi: 10.1021/acs.est.7b05045
[48]
Tang J Y, Li Y J, Li X L, Jing S A, Huang C, Zhu J P, Hu Q Y, Wang H L, Lu J, Lou S R, Rao P H, Huang D D. Sci. Total Environ., 2021, 788: 147795.

doi: 10.1016/j.scitotenv.2021.147795
[49]
Pereira K L, Dunmore R, Whitehead J, Alfarra M R, Allan J D, Alam M S, Harrison R M, McFiggans G, Hamilton J F. Atmos. Chem. Phys., 2018, 18(15): 11073.

doi: 10.5194/acp-18-11073-2018
[50]
Qi L J, Liu H, Shen X E, Fu M L, Huang F F, Man H Y, Deng F Y, Ali Shaikh A, Wang X T, Dong R, Song C, He K B. Environ. Sci. Technol., 2019, 53(23): 13832.

doi: 10.1021/acs.est.9b01316
[51]
Chu B W, Chen T Z, Liu Y C, Ma Q X, Mu Y J, Wang Y H, Ma J Z, Zhang P, Liu J, Liu C S, Gui H Q, Hu R Z, Hu B, Wang X M, Wang Y S, Liu J G, Xie P H, Chen J M, Liu Q, Jiang J K, Li J H, He K B, Liu W Q, Jiang G B, Hao J M, He H. Natl. Sci. Rev., 2022, 9(2):nwab103.
[52]
Platt S M, El Haddad I, Zardini A A, Clairotte M, Astorga C, Wolf R, Slowik J G, Temime-Roussel B, Marchand N, Ježek I, Drinovec L, Močnik G, Möhler O, Richter R, Barmet P, Bianchi F, Baltensperger U, PrÉvôt A S H. Atmos. Chem. Phys., 2013, 13(18): 9141.

doi: 10.5194/acp-13-9141-2013
[53]
Liu T Y, Zhou L Y, Liu Q Y, Lee B P, Yao D W, Lu H X, Lyu X P, Guo H, Chan C K. Environ. Sci. Technol., 2019, 53(6): 3001.

doi: 10.1021/acs.est.8b06587
[54]
Chirico R, DeCarlo P F, Heringa M F, Tritscher T, Richter R, PrÉvôt A S H, Dommen J, Weingartner E, Wehrle G, Gysel M, Laborde M, Baltensperger U. Atmos. Chem. Phys., 2010, 10(23): 11545.

doi: 10.5194/acp-10-11545-2010
[55]
Jathar S H, Friedman B, Galang A A, Link M F, Brophy P, Volckens J, Eluri S, Farmer D K. Environ. Sci. Technol., 2017, 51(3): 1377.

doi: 10.1021/acs.est.6b04602
[56]
Karjalainen P, Timonen H, Saukko E, Kuuluvainen H, Saarikoski S, Aakko-Saksa P, Murtonen T, Bloss M, dal Maso M, Simonen P, Ahlberg E, Svenningsson B, Brune W H, Hillamo R, Keskinen J, Rönkkö T. Atmos. Chem. Phys., 2016, 16(13): 8559.

doi: 10.5194/acp-16-8559-2016
[57]
Timonen H, Karjalainen P, Saukko E, Saarikoski S, Aakko-Saksa P, Simonen P, Murtonen T, dal Maso M, Kuuluvainen H, Bloss M, Ahlberg E, Svenningsson B, Pagels J, Brune W H, Keskinen J, Worsnop D R, Hillamo R, Rönkkö T. Atmos. Chem. Phys., 2017, 17(8): 5311.

doi: 10.5194/acp-17-5311-2017
[58]
Pereira K L, Dunmore R, Whitehead J, Alfarra M R, Allan J D, Alam M S, Harrison R M, McFiggans G, Hamilton J F. Atmos. Chem. Phys., 2018, 18(15): 11073.

doi: 10.5194/acp-18-11073-2018
[59]
Miracolo M A, Presto A A, Lambe A T, Hennigan C J, Donahue N M, Kroll J H, Worsnop D R, Robinson A L. Environ. Sci. Technol., 2010, 44(5): 1638.

doi: 10.1021/es902635c pmid: 20121083
[60]
Gordon T D, Tkacik D S, Presto A A, Zhang M, Jathar S H, Nguyen N T, Massetti J, Truong T, Cicero-Fernandez P, Maddox C, Rieger P, Chattopadhyay S, Maldonado H, Maricq M M, Robinson A L. Environ. Sci. Technol., 2013, 47(24): 14137.

doi: 10.1021/es403556e
[61]
Saliba G, Saleh R, Zhao Y L, Presto A A, Lambe A T, Frodin B, Sardar S, Maldonado H, Maddox C, May A A, Drozd G T, Goldstein A H, Russell L M, Hagen F B, Robinson A L. Environ. Sci. Technol., 2017, 51(11): 6542.

doi: 10.1021/acs.est.6b06509
[62]
Roth P, Yang J C, Stamatis C, Barsanti K C, Cocker D R III, Durbin T D, Asa-Awuku A, Karavalakis G. Sci. Total. Environ., 2020, 737: 140333.

doi: 10.1016/j.scitotenv.2020.140333
[63]
Kuittinen N, McCaffery C, Peng W H, Zimmerman S, Roth P, Simonen P, Karjalainen P, Keskinen J, Cocker D R, Durbin T D, Rönkkö T, Bahreini R, Karavalakis G. Environ. Pollut., 2021, 282: 117069.

doi: 10.1016/j.envpol.2021.117069
[64]
Du Z F, Hu M, Peng J F, Zhang W B, Zheng J, Gu F T, Qin Y H, Yang Y D, Li M R, Wu Y S, Shao M, Shuai S J. Atmos. Chem. Phys., 2018, 18(12): 9011.

doi: 10.5194/acp-18-9011-2018
[65]
Chen T Z, Liu Y C, Liu C G, Liu J, Chu B W, He H. Atmos. Environ., 2019, 201: 101.

doi: 10.1016/j.atmosenv.2019.01.001
[66]
Roth P, Yang J C, Peng W H, Cocker D R III, Durbin T D, Asa-Awuku A, Karavalakis G. Atmos. Environ., 2020, 220: 117064.

doi: 10.1016/j.atmosenv.2019.117064
[67]
Wang H, Guo S, Yu Y, Shen R Z, Zhu W F, Tang R Z, Tan R, Liu K F, Song K, Zhang W B, Zhang Z, Shuai S J, Xu H M, Zheng J, Chen S Y, Li S M, Zeng L M, Wu Z J. Sci. Total Environ., 2021, 795: 148809.

doi: 10.1016/j.scitotenv.2021.148809
[68]
Deng W, Fang Z, Wang Z Y, Zhu M, Zhang Y L, Tang M J, Song W, Lowther S, Huang Z H, Jones K, Peng P A, Wang X M. Sci. Total Environ., 2020, 699: 134357.

doi: 10.1016/j.scitotenv.2019.134357
[69]
Alam M S, Zeraati-Rezaei S, Xu H M, Harrison R M. Environ. Sci. Technol., 2019, 53(19): 11345.

doi: 10.1021/acs.est.9b03053
[70]
Roth P, Yang J C, Fofie E, Cocker D R III, Durbin T D, Brezny R, Geller M, Asa-Awuku A, Karavalakis G. Environ. Sci. Technol., 2019, 53(6): 3037.

doi: 10.1021/acs.est.8b06418
[71]
Zhao Y L, Saleh R, Saliba G, Presto A A, Gordon T D, Drozd G T, Goldstein A H, Donahue N M, Robinson A L. PNAS, 2017, 114(27): 6984.

doi: 10.1073/pnas.1620911114
[72]
Chen T Z, Liu Y C, Ma Q X, Chu B W, Zhang P, Liu C G, Liu J, He H. Atmos. Chem. Phys., 2019, 19(12): 8063.

doi: 10.5194/acp-19-8063-2019
[73]
Liu T, Wang X, Deng W, Hu Q, Ding X, Zhang Y, He Q, Zhang Z, Lü S, Bi X, Chen J, Yu J. Atmos. Chem. Phys., 2015, 15(15): 9049.

doi: 10.5194/acp-15-9049-2015
[74]
Liu T, Wang X, Hu Q, Deng W, Zhang Y, Ding X, Fu X, Bernard F, Zhang Z, Lü S, He Q, Bi X, Chen J, Sun Y, Yu J, Peng P, Sheng G, Fu J. Atmos. Chem. Phys., 2016, 16(2): 675.

doi: 10.5194/acp-16-675-2016
[75]
Lambe A T, Onasch T B, Croasdale D R, Wright J P, Martin A T, Franklin J P, Massoli P, Kroll J H, Canagaratna M R, Brune W H, Worsnop D R, Davidovits P. Environ. Sci. Technol., 2012, 46(10): 5430.

doi: 10.1021/es300274t
[76]
Simonen P, Saukko E, Karjalainen P, Timonen H, Bloss M, Aakko-Saksa P, Rönkkö T, Keskinen J, dal Maso M. Atmos. Meas. Tech., 2017, 10(4): 1519.

doi: 10.5194/amt-10-1519-2017
[77]
Tkacik D S, Lambe A T, Jathar S, Li X, Presto A A, Zhao Y L, Blake D, Meinardi S, Jayne J T, Croteau P L, Robinson A L. Environ. Sci. Technol., 2014, 48(19): 11235.

doi: 10.1021/es502239v
[78]
Ng N L, Kroll J H, Chan A W H, Chhabra P S, Flagan R C, Seinfeld J H. Atmos. Chem. Phys., 2007, 7(14): 3909.

doi: 10.5194/acp-7-3909-2007
[79]
Ng N L, Canagaratna M R, Jimenez J L, Chhabra P S, Seinfeld J H, Worsnop D R. Atmos. Chem. Phys., 2011, 11(13): 6465.

doi: 10.5194/acp-11-6465-2011
[80]
Presto A A, Gordon T D, Robinson A L. Atmos. Chem. Phys., 2014, 14(10): 5015.

doi: 10.5194/acp-14-5015-2014
[81]
Heald C L, Kroll J H, Jimenez J L, Docherty K S, DeCarlo P F, Aiken A C, Chen Q, Martin S T, Farmer D K, Artaxo P. Geophys. Res. Lett., 2010, 37(8): L08803.
[82]
Zhang Z R, Zhu W F, Hu M, Liu K F, Wang H, Tang R Z, Shen R Z, Yu Y, Tan R, Song K, Li Y J, Zhang W B, Zhang Z, Xu H M, Shuai S J, Li S D, Chen Y F, Li J Y, Wang Y S, Guo S. Atmos. Chem. Phys., 2021, 21(19): 15221.

doi: 10.5194/acp-21-15221-2021
[83]
Ng N L, Canagaratna M R, Zhang Q, Jimenez J L, Tian J, Ulbrich I M, Kroll J H, Docherty K S, Chhabra P S, Bahreini R, Murphy S M, Seinfeld J H, Hildebrandt L, Donahue N M, DeCarlo P F, Lanz V A, PrÉvôt A S H, Dinar E, Rudich Y, Worsnop D R. Atmos. Chem. Phys., 2010, 10(10): 4625.

doi: 10.5194/acp-10-4625-2010
[84]
Le Breton M, Psichoudaki M, Hallquist M,Watne Å K, Lutz A, Hallquist Å M. Aerosol Sci. Technol., 2019, 53(3): 244.

doi: 10.1080/02786826.2019.1566592
[85]
Zhou L Y, Salvador C M, Priestley M, Hallquist M, Liu Q Y, Chan C K, Hallquist Å M. Environ. Sci. Technol., 2021, 55(21): 14515.

doi: 10.1021/acs.est.1c00412
[86]
Ruggeri G, Bernhard F A, Henderson B H, Takahama S. Atmos. Chem. Phys., 2016, 16(14): 8729.

doi: 10.5194/acp-16-8729-2016
[87]
Zhang J, Choi M, Ji Y M, Zhang R Y, Zhang R Q, Ying Q. ACS Earth Space Chem., 2021, 5(8): 1958.

doi: 10.1021/acsearthspacechem.1c00092
[88]
Lannuque V, Camredon M, Couvidat F, Hodzic A, Valorso R, Madronich S, Bessagnet B, Aumont B. Atmos. Chem. Phys., 2018, 18(18): 13411.

doi: 10.5194/acp-18-13411-2018
[89]
Mouchel-Vallon C, Lee-Taylor J, Hodzic A, Artaxo P, Aumont B, Camredon M, Gurarie D, Jimenez J L, Lenschow D H, Martin S T, Nascimento J, Orlando J J, Palm B B, Shilling J E, Shrivastava M, Madronich S. Atmos. Chem. Phys., 2020, 20(10): 5995.

doi: 10.5194/acp-20-5995-2020
[90]
Odum J R, Hoffmann T, Bowman F, Collins D, Flagan R C, Seinfeld J H. Environ. Sci. Technol., 1996, 30(8): 2580.

doi: 10.1021/es950943+
[91]
Donahue N M, Epstein S A, Pandis S N, Robinson A L. Atmos. Chem. Phys., 2011, 11(7): 3303.

doi: 10.5194/acp-11-3303-2011
[92]
Donahue N M, Kroll J H, Pandis S N, Robinson A L. Atmos. Chem. Phys., 2012, 12(2): 615.

doi: 10.5194/acp-12-615-2012
[93]
Chan M N, Chan A W H, Chhabra P S, Surratt J D, Seinfeld J H. Atmos. Chem. Phys., 2009, 9(15): 5669.

doi: 10.5194/acp-9-5669-2009
[94]
Chen S, Brune W H, Lambe A T, Davidovits P, Onasch T B. Atmos. Chem. Phys., 2013, 13(9): 5017.

doi: 10.5194/acp-13-5017-2013
[95]
Ye P L, Zhao Y L, Chuang W K, Robinson A L, Donahue N M. Atmos. Chem. Phys., 2018, 18(9): 6171.

doi: 10.5194/acp-18-6171-2018
[96]
Woody M C, West J J, Jathar S H, Robinson A L, Arunachalam S. Atmos. Chem. Phys., 2015, 15(12): 6929.

doi: 10.5194/acp-15-6929-2015
[97]
Esmaeilirad S, Hosseini V. J. Aerosol Sci., 2018, 124: 68.

doi: 10.1016/j.jaerosci.2018.07.003
[98]
Zhao B, Wang S X, Donahue N M, Chuang W, Hildebrandt Ruiz L, Ng N L, Wang Y J, Hao J M. Environ. Sci. Technol., 2015, 49(4): 2245.

doi: 10.1021/es5048914 pmid: 25581402
[99]
Li J L, Li H, Li K, Chen Y, Zhang H, Zhang X, Wu Z H, Liu Y C, Wang X Z, Wang W G, Ge M F. Atmos. Chem. Phys., 2021, 21(10): 7773.

doi: 10.5194/acp-21-7773-2021
[1] Qiong Wang, Kang Xiao. Indoor Formaldehyde Concentrations and the Influencing Factors in Urban China [J]. Progress in Chemistry, 2022, 34(3): 743-772.
[2] Rongzhi Tang, Hui Wang, Ying Liu, Song Guo. Constituents of Atmospheric Semi-Volatile and Intermediate Volatility Organic Compounds and Their Contribution to Organic Aerosol [J]. Progress in Chemistry, 2019, 31(1): 180-190.
[3] Bingjie Zhang, Qian S. Liu, Qunfang Zhou, Jianqing Zhang, Guibin Jiang. Neurotoxicological Effects of Nanosilver [J]. Progress in Chemistry, 2018, 30(9): 1392-1402.
[4] Fangting Gu, Min Hu*, Jing Zheng, Song Guo. Research Progress on Particulate Organonitrates [J]. Progress in Chemistry, 2017, 29(9): 962-969.
[5] Kunlun Yang, Jiasheng Zhou, Dan Lv, Yue Sun, Zimo Lou, Xinhua Xu*. Preparation and Application of Iron-Based Composite Materials for the Removal of Antimony from Aqueous Solution [J]. Progress in Chemistry, 2017, 29(11): 1407-1421.
[6] Qi Qian, Zhou Xuehua, Wang Wenxing. Studies on Formation of Aqueous Secondary Organic Aerosols [J]. Progress in Chemistry, 2014, 26(0203): 458-466.
[7] Ma Ye, Chen Jianmin, Wang Lin. Characteristics and Formation Mechanisms of Atmospheric Organosulfates [J]. Progress in Chemistry, 2012, 24(11): 2277-2286.
[8] . Formation Mechanism of Secondary Organic Aerosols from the Reaction of Volatile and Semi-Volatile Compounds [J]. Progress in Chemistry, 2010, 22(04): 727-733.
[9] Meng Qingbin Liu Keliang. Progress in the Research of Peptide Self-Assembly [J]. Progress in Chemistry, 2009, 21(11): 2411-2423.
[10] Wang Zhenya**, |Hao Liqing ,|Zhang Weijun. Gas/Particle Partitioning Theory for Secondary Organic Aerosol [J]. Progress in Chemistry, 2007, 19(01): 93-100.