中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (4): 963-972 DOI: 10.7536/PC210438 Previous Articles   Next Articles

• Review •

Progress of Synchrotron-Based Research on Atmospheric Science

Xiangrui Kong1(), Jing Dou2, Shuzhen Chen2,3, Bingbing Wang4, Zhijun Wu5()   

  1. 1 Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-41296, Sweden
    2 Institute for Atmospheric and Climate Science, ETH Zürich, Zürich 8092, Switzerland
    3 Laboratory of Environmental Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
    4 State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences,Xiamen University,Xiamen 361102, China
    5 College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
  • Received: Revised: Online: Published:
  • Contact: Xiangrui Kong, Zhijun Wu
  • Supported by:
    National Natural Science Foundation of China(41975160); Swedish Research Council(2021-04042); Swedish Foundation for International Cooperation in Research and Higher Education(CH2019-8361)
Richhtml ( 13 ) PDF ( 299 ) Cited
Export

EndNote

Ris

BibTeX

As a novel and unique large-scale instrument, the synchrotron radiation facilities have been progressively applied to the research of atmospheric science. This article introduces the theoretical principles, key technologies, and recent major research results of key synchrotron radiation-based experimental methods. The main synchrotron radiation technologies include the atmospheric pressure X-ray photoelectron spectroscopy (APXPS), the near edge X-ray absorption fine structure (NEXAFS) and the scanning transmission X-ray microscopy (STXM). A key component (environmental cell) commonly used in all three technologies is explained in detail. This article classifies the collected research according to experimental types, i.e., APXPS experiments, liquid jet experiments and STXM experiments. The main topics include: (1) ice surface, (2) salt surface, (3) acidic solution, (4) organic solution, (5) halite solution, (6) ozonolysis, (7) soot, (8) ice nuclei, (9) hygroscopicity and (10) reaction mechanism. The development of synchrotron radiation facilities has provided strong support for the research of aerosol science and atmospheric heterogeneous chemistry, giving atmospheric scientists the ability to explore unknown fields and latitudes. It is foreseeable that more and more important atmospheric processes and mechanisms will be revealed by technologies based on synchrotron radiation, which will also reflect the great potential and value of synchrotron radiation devices in the field of atmospheric and environmental science.

Contents

1 Introduction

2 Synchrotron-based techniques used in atmospheric science

2.1 X-ray Photoelectron Spectroscopy (XPS)

2.2 X-ray Adsorption Spectroscopy (XAS)

3 Key technologies for connecting synchrotron-based techniques and atmospheric science——Environmental cell

3.1 APXPS environmental chamber

3.2 Liquid jet environment chamber

3.3 STXM environmental chamber

4 Research progress

4.1 APXPS

4.2 Liquid jet

4.3 Scanning Transmission X-ray Microscopy (STXM)

5 Limitations and Outlook

6 Summary

Fig. 1 Illustration of the escape of photoelectron. K, L1, K2,3 are electron orbitals
Fig. 2 Illustration of the escape of Auger electron. K, L1, K2,3 are electron orbitals
Fig. 3 Schematic view of APXPS endstations
Fig. 4 Illustration of liquid jet environmental cell
Fig. 5 Illustration of STXM environmental cell
Fig. 6 Uptake and distribution of HCl on ice surface
Fig. 7 The NEXAFS spectra of (a) Na K-edge and (b) O K-edge at various RHs. The RH values are marked below the corresponding spectra. The order of measurements follows the top-down sequence. The letter r in the bracket stands for reverse, where the RH is reached from higher RH
[1]
George C, Ammann M, D’Anna B, Donaldson D J, Nizkorodov S A. Chem. Rev., 2015, 115(10): 4218.

doi: 10.1021/cr500648z
[2]
Nie W, Ding A, Wang T, Kerminen V M, George C, Xue L, Wang W, Zhang Q, Petaja T, Qi X, Gao X, Wang X, Yang X, Fu C, Kulmala M. Sci. Rep., 2014, 4: 6634.

doi: 10.1038/srep06634
[3]
Simpson W R, Brown S S, Saiz-Lopez A, Thornton J A, von Glasow R. Chem. Rev., 2015, 115(10): 4035.

doi: 10.1021/cr5006638
[4]
Abbatt J P. Chem. Rev., 2003, 103: 4783.

doi: 10.1021/cr0206418
[5]
Chen H H, Nanayakkara C E, Grassian V H. Chem. Rev., 2012, 112(11): 5919.

doi: 10.1021/cr3002092
[6]
Burkholder J B, Cox R A, Ravishankara A R. Chem. Rev., 2015, 115(10): 3704.

doi: 10.1021/cr5006759 pmid: 25893463
[7]
Kolb C E, Cox R A, Abbatt J P D, Ammann M, Davis E J, Donaldson D J, Garrett B C, George C, Griffiths P T, Hanson D R, Kulmala M, McFiggans G, Pöschl U, Riipinen I, Rossi M J, Rudich Y, Wagner P E, Winkler P M, Worsnop D R, O' Dowd C D. Atmos. Chem. Phys., 2010, 10(21): 10561.

doi: 10.5194/acp-10-10561-2010
[8]
Reid J P, Bertram A K, Topping D O, Laskin A, Martin S T, Petters M D, Pope F D, Rovelli G. Nat. Commun., 2018, 9(1): 956.

doi: 10.1038/s41467-018-03027-z
[9]
Artiglia L, Edebeli J, Orlando F, Chen S Z, Lee M T, Corral Arroyo P, Gilgen A, Bartels-Rausch T, Kleibert A, Vazdar M, Andres Carignano M, Francisco J S, Shepson P B, Gladich I, Ammann M. Nat. Commun., 2017, 8(1): 1.

doi: 10.1038/s41467-016-0009-6
[10]
McNeill V F, Loerting T, Geiger F M, Trout B L, Molina M J. Proc. Natl. Acad. Sci. USA, 2006, 103, 9422.

doi: 10.1073/pnas.0603494103
[11]
Wise M E, Martin S T, Russell L M, Buseck P R. Aerosol Sci. Tech., 2008, 42, 281.

doi: 10.1080/02786820802047115
[12]
Bruzewicz D A, Checco A, Ocko B M, Lewis E R, McGraw R L, Schwartz S E. J. Chem. Phys., 2011, 134(4): 044702.

doi: 10.1063/1.3524195
[13]
Watts J F, Wolstenholme J. An Introduction to Surface Analysis by XPS and AES, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester., West Sussex PO 19 8SQ, England, 2003.
[14]
Moffet R C, Tivanski A V, Gilles M K. Fundamentals and Applications in Aerosol Spectroscopy, CRC Press; Taylor & Francis Group, Boca Raton, FL, 2011.
[15]
Kong X R, Waldner A, Orlando F, Artiglia L, Huthwelker T, Ammann M, Bartels-Rausch T. J. Phys. Chem. Lett., 2017, 8(19): 4757.

doi: 10.1021/acs.jpclett.7b01573
[16]
Bluhm H, Ogletree D F, Fadley C S, Hussain Z, Salmeron M. J. Phys.: Condens. Matter, 2002, 14(8): L227.
[17]
Kolmakov A, Gregoratti L, Kiskinova M, Gunther S. Catal. Lett., 2016, 59: 448.

doi: 10.1007/s11244-015-0519-1 pmid: 28008215
[18]
Fitzek H, Schroettner H, Wagner J, Hofer F, Rattenberger J. J. Microsc., 2016, 262(1): 85.

doi: 10.1111/jmi.12347
[19]
Ramachandramoorthy R, Bernal R, Espinosa H D. ACS Nano, 2015, 9(5): 4675.

doi: 10.1021/acsnano.5b01391 pmid: 25942405
[20]
Johansson S M, Kong X R, Papagiannakopoulos P, Thomson E S, Pettersson J B C. Rev. Sci. Instrum., 2017, 88(3): 035112.

doi: 10.1063/1.4978325
[21]
Ogletree D F, Bluhm H, Lebedev G, Fadley C S, Hussain Z, Salmeron M. Rev. Sci. Instrum., 2002, 73(11): 3872.

doi: 10.1063/1.1512336
[22]
Velasco-VÉlez J J, Pfeifer V, Hävecker M, Wang R, Centeno A, Zurutuza A, Algara-Siller G, Stotz E, Skorupska K, Teschner D, Kube P, Braeuninger-Weimer P, Hofmann S, Schlögl R, Knop-Gericke A. Rev. Sci. Instrum., 2016, 87(5): 053121.

doi: 10.1063/1.4951724
[23]
Orlando F, Waldner A, Bartels-Rausch T, Birrer M, Kato S, Lee M T, Proff C, Huthwelker T, Kleibert A, Bokhoven J, Ammann M. Top. Catal., 2016, 59(5/7): 591.

doi: 10.1007/s11244-015-0515-5
[24]
Siegbahn H, Siegbahn K. J. Electron Spectrosc., 1973, 2: 319.

doi: 10.1016/0368-2048(73)80023-4
[25]
Lena T, Ashley R H, Osman K, Line K, Hendrik B, J. Phys.: Condens. Mat., 2017, 29: 053002.
[26]
Winter B. Nucl. Instrum. Methods Phys. Res., 2009, 601, 139.

doi: 10.1016/j.nima.2008.12.108
[27]
Molina M J, Tso T L, Molina L T, Wang F CY. Science, 1987, 238, 1253.

pmid: 17744362
[28]
Bolton K, Pettersson J B C. J. Am. Chem. Soc., 2001, 123: 7360.

pmid: 11472166
[29]
Devlin J P, Uras N, Sadlej J, Buch V. Nature, 2002, 417(6886): 269.

doi: 10.1038/417269a
[30]
Parent P, Lasne J, Marcotte G, Laffon C. Phys. Chem. Chem. Phys., 2011, 13(15): 7142.

doi: 10.1039/c0cp02864a
[31]
Svanberg M, Pettersson J B C, Bolton K. J. Phys. Chem. A, 2000, 104(24): 5787.

doi: 10.1021/jp0012698
[32]
Waldner A, Artiglia L, Kong X R, Orlando F, Huthwelker T, Ammann M, Bartels-Rausch T. Phys. Chem. Chem. Phys., 2018, 20(37): 24408.

doi: 10.1039/c8cp03621g pmid: 30221299
[33]
Bartels-Rausch T, Orlando F, Kong X R, Artiglia L, Ammann M. ACS Earth Space Chem., 2017, 1(9): 572.

doi: 10.1021/acsearthspacechem.7b00077
[34]
Krepelová A, Newberg J, Huthwelker T, Bluhm H, Ammann M. Phys. Chem. Chem. Phys., 2010, 12(31): 8870.

doi: 10.1039/c0cp00359j pmid: 20532376
[35]
Krepelová A, Bartels-Rausch T, Brown M A, Bluhm H, Ammann M. J. Phys. Chem. A, 2013, 117(2): 401.

doi: 10.1021/jp3102332
[36]
Starr D E, Pan D, Newberg J T, Ammann M, Wang E G, Michaelides A, Bluhm H. PCCP, 2011, 13: 19988.

doi: 10.1039/c1cp21493d
[37]
Newberg J T, Bluhm H. PCCP, 2015, 17: 23554.

doi: 10.1039/C5CP03821A
[38]
Kong X R, Castarède D, Boucly A, Artiglia L, Ammann M, Bartels-Rausch T, Thomson E S, Pettersson J B C. J. Phys. Chem. C, 2020, 124(9): 5263.

doi: 10.1021/acs.jpcc.0c00319
[39]
Kong X, Gladich I, Castarede D, Thomson E S, Boucly A, Artiglia L, Ammann M, Pettersson J B C, European Geosciences Union General Assembly, 2021, 21: 727.
[40]
Krepelová A, Huthwelker T, Bluhm H, Ammann M. ChemPhysChem, 2010, 11(18): 3859.

doi: 10.1002/cphc.201000461
[41]
Ghosal S, Hemminger J C, Bluhm H, Mun B S, Hebenstreit E L D, Ketteler G, Ogletree D F, Requejo F G, Salmeron M. Science, 2005, 307(5709): 563.

doi: 10.1126/science.1106525
[42]
Cziczo D J, Froyd K D, Hoose C, Jensen E J, Diao M, Zondlo M A, Smith J B, Twohy C H, Murphy D M. Science, 2013, 340: 1320.

doi: 10.1126/science.1234145
[43]
Bartels-Rausch T, Kong X, Orlando F, Artiglia L, Waldner A, Huthwelker T, Ammann M. Cryosphere Discuss., 2020, 2020: 1.
[44]
Lewis T, Winter B, Stern A C, Baer M D, Mundy C J, Tobias D J, Hemminger J C. J. Phys. Chem. C, 2011, 115(43): 21183.

doi: 10.1021/jp205842w
[45]
Lam R K, Smith J W, Rizzuto A M, Karslıoğlu O, Bluhm H, Saykally R J. J. Chem. Phys., 2017, 146(9): 094703.

doi: 10.1063/1.4977046
[46]
Ottosson N, Vácha R, Aziz E F, Pokapanich W, Eberhardt W, Svensson S, Öhrwall G, Jungwirth P, Björneholm O, Winter B. J. Chem. Phys., 2009, 131(12): 124706.

doi: 10.1063/1.3236805
[47]
Ottosson N, Wernersson E, Söderström J, Pokapanich W, Kaufmann S, Svensson S, Persson I, Öhrwall G, Björneholm O. Phys. Chem. Chem. Phys., 2011, 13(26): 12261.

doi: 10.1039/c1cp20245f pmid: 21633751
[48]
Lee M T, Orlando F, Artiglia L, Chen S Z, Ammann M. J. Phys. Chem. A, 2016, 120(49): 9749.

doi: 10.1021/acs.jpca.6b09261
[49]
Öhrwall G, Prisle N L, Ottosson N, Werner J, Ekholm V, Walz M M, Björneholm O. J. Phys. Chem. B, 2015, 119(10): 4033.

doi: 10.1021/jp509945g
[50]
Prisle N L, Ottosson N, Öhrwall G, Söderström J, dal Maso M, Björneholm O. Atmos. Chem. Phys., 2012, 12(24): 12227.

doi: 10.5194/acp-12-12227-2012
[51]
Werner J, Julin J, Dalirian M, Prisle N L, Öhrwall G, Persson I, Björneholm O, Riipinen I. Phys. Chem. Chem. Phys., 2014, 16(39): 21486.

doi: 10.1039/C4CP02776K
[52]
Walz M M, Caleman C, Werner J, Ekholm V, Lundberg D, Prisle N L, Öhrwall G, Björneholm O. Phys. Chem. Chem. Phys., 2015, 17(21): 14036.

doi: 10.1039/c5cp01870f pmid: 25953683
[53]
Walz M M, Werner J, Ekholm V, Prisle N L,. Ohrwall G, Bjorneholm O. PCCP, 2016, 18: 6648.

doi: 10.1039/C5CP06463E
[54]
Ottosson N, Heyda J, Wernersson E, Pokapanich W, Svensson S, Winter B, Öhrwall G, Jungwirth P, Björneholm O. Phys. Chem. Chem. Phys., 2010, 12(36): 10693.

doi: 10.1039/c0cp00365d pmid: 20617257
[55]
Lee M T, Brown M A, Kato S, Kleibert A, Türler A, Ammann M. J. Phys. Chem. A, 2015, 119(19): 4600.

doi: 10.1021/jp510707s
[56]
Lee M T, Orlando F, Khabiri M, Roeselová M, Brown M A, Ammann M. Phys. Chem. Chem. Phys., 2019, 21(16): 8418.

doi: 10.1039/C8CP07448H
[57]
Gladich I, Chen S Z, Vazdar M, Boucly A, Yang H Y, Ammann M, Artiglia L. J. Phys. Chem. Lett., 2020, 11(9): 3422.

doi: 10.1021/acs.jpclett.0c00633 pmid: 32283032
[58]
Moffet R C, Henn T, Laskin A, Gilles M K. Anal. Chem., 2010, 82(19): 7906.

doi: 10.1021/ac1012909 pmid: 20879799
[59]
Moffet R C, O'Brien R E, Alpert P A, Kelly S T, Pham D Q, Gilles M K, Knopf D A, Laskin A. Atmos. Chem. Phys., 2016, 16(22): 14515.

doi: 10.5194/acp-16-14515-2016
[60]
Wilson T W, Ladino L A, Alpert P A, Breckels M N, Brooks I M, Browse J, Burrows S M, Carslaw K S, Huffman J A, Judd C, Kilthau W P, Mason R H, McFiggans G, Miller L A, Nájera J J, Polishchuk E, Rae S, Schiller C L, Si M, Temprado J V, Whale T F, Wong J P S, Wurl O, Yakobi-Hancock J D, Abbatt J P D, Aller J Y, Bertram A K, Knopf D A, Murray B J. Nature, 2015, 525(7568): 234.

doi: 10.1038/nature14986
[61]
Wang B, Knopf D A, China S, Arey B W, Harder T. H., Gilles M K, Laskin A. PCCP, 2016, 18: 29721.

doi: 10.1039/C6CP05253C
[62]
Knopf D A, Alpert P A, Wang B, O’Brien R E, Kelly S T, Laskin A, Gilles M K, Moffet R C. J. Geophys. Res.:Atmos., 2014, 119 (10): 365.
[63]
Wang B, Laskin A, Roedel T, Gilles M K, Moffet R C, Tivanski A V, Knopf D A. J. Geophys. Res.:Atmos., 2012, 117.
[64]
Ghorai S, Tivanski A V. Anal. Chem., 2010, 82(22): 9289.

doi: 10.1021/ac101797k pmid: 21028839
[65]
Piens D S, Kelly S T, Harder T H, Petters M D, O’Brien R E, Wang B B, Teske K, Dowell P, Laskin A, Gilles M K. Environ. Sci. Technol., 2016, 50(10): 5172.

doi: 10.1021/acs.est.6b00793
[66]
Pöhlker C, Saturno J, Krüger M L, Förster J D, Weigand M, Wiedemann K T, Bechtel M, Artaxo P, Andreae M O. Geophys. Res. Lett., 2014, 41(10): 3681.

doi: 10.1002/2014GL059409
[67]
Alpert P A, Ciuraru R, Rossignol S, Passananti M, Tinel L, Perrier S, Dupart Y, Steimer S S, Ammann M, Donaldson D J, George C. Sci. Rep., 2017, 7(1): 1.

doi: 10.1038/s41598-016-0028-x
[68]
Ghorai S, Laskin A, Tivanski A V. J. Phys. Chem. A, 2011, 115(17): 4373.

doi: 10.1021/jp112360x pmid: 21480651
[69]
Steimer S S, Lampimäki M, Coz E, Grzinic G, Ammann M. Atmos. Chem. Phys., 2014, 14(19): 10761.

doi: 10.5194/acp-14-10761-2014
[70]
Berkemeier T, Steimer S S, Krieger U K, Peter T, Pöschl U, Ammann M, Shiraiwa M. Phys. Chem. Chem. Phys., 2016, 18(18): 12662.

doi: 10.1039/c6cp00634e pmid: 27095585
[71]
Alpert P A, Corral Arroyo P, Dou J, Krieger U K, Steimer S S, Forster J D, Ditas F, Pohlker C, Rossignol S, Passananti M, Perrier S, George C, Shiraiwa M, Berkemeier T, Watts B, Ammann M, PCCP, 2019, 21:20613.

doi: 10.1039/C9CP03731D
[72]
Alpert P A, Dou J, Corral Arroyo P, Schneider F, Xto J, Luo B P, Peter T, Huthwelker T, Borca C N, Henzler K D, Schaefer T, Herrmann H, Raabe J, Watts B, Krieger U K, Ammann M. Nat. Commun., 2021, 12(1): 1.

doi: 10.1038/s41467-020-20314-w
[73]
Dou J, Alpert P A, Corral Arroyo P, Luo B, Schneider F, Xto J, Huthwelker T, Borca C N, Henzler K D, Raabe J, Watts B, Herrmann H, Peter T, Ammann M, Krieger U K. Atmos. Chem. Phys., 2021, 21: 315.

doi: 10.5194/acp-21-315-2021
[1] Jiliang Guo, Jianfei Peng, Ainan Song, Jinsheng Zhang, Zhuofei Du, Hongjun Mao. Studies on the Formation of Secondary Organic Aerosol from Vehicle Exhaust [J]. Progress in Chemistry, 2023, 35(1): 177-188.
[2] Jiali Zhong, Weigang Wang, Chao Peng, Nan Ma, Zhijun Wu, Maofa Ge. Atmospheric Aerosol Hygroscopicity and Their Influence on Environment [J]. Progress in Chemistry, 2022, 34(4): 801-814.
[3] Huan Song, Qi Zou, Keding Lu. Parameterization and Application of Hydroperoxyl Radicals(HO2) Heterogeneous Uptake Coefficient [J]. Progress in Chemistry, 2021, 33(7): 1175-1187.
[4] Shumin Cheng, Lin Du, Xiuhui Zhang, Maofa Ge. Application of Langmuir Monolayers in the Investigation of Surface Properties of Sea Spray Aerosols [J]. Progress in Chemistry, 2021, 33(10): 1721-1730.
[5] Rongzhi Tang, Hui Wang, Ying Liu, Song Guo. Constituents of Atmospheric Semi-Volatile and Intermediate Volatility Organic Compounds and Their Contribution to Organic Aerosol [J]. Progress in Chemistry, 2019, 31(1): 180-190.
[6] Hui Huang, Jun Chen, Huiru Lu, Mengxue Zhou, Yi Hu, Zhifang Chai. Neurotoxicity of Key Metals in Parkinson's Disease [J]. Progress in Chemistry, 2018, 30(10): 1592-1600.
[7] Fangting Gu, Min Hu*, Jing Zheng, Song Guo. Research Progress on Particulate Organonitrates [J]. Progress in Chemistry, 2017, 29(9): 962-969.
[8] Wang Haichao, Lu Keding. Determination and Parameterization of the Heterogeneous Uptake Coefficient of Dinitrogen Pentoxide (N2O5) [J]. Progress in Chemistry, 2016, 28(6): 917-933.
[9] Qi Qian, Zhou Xuehua, Wang Wenxing. Studies on Formation of Aqueous Secondary Organic Aerosols [J]. Progress in Chemistry, 2014, 26(0203): 458-466.
[10] Ling Shengjie, Shao Zhengzhong, Chen Xin. Application of Synchrotron FTIR Imaging for Cells [J]. Progress in Chemistry, 2014, 26(01): 178-192.
[11] Tian Yu, Zhu Caizhen, Gong Jinghua, Ma Jinghong, Yang Shuguang, Xu Jian. In Situ Synchrotron Radiation X-Ray Scattering and Diffraction Measurement Studies on Structure and Morphology of Fibers [J]. Progress in Chemistry, 2013, 25(10): 1751-1762.
[12] Ling Shengjie, Huang Yufang*, Huang Lei, Shao Zhengzhong, Chen Xin*. Application of Synchrotron FTIR Microspectroscopy and Mapping in Analytical Chemistry [J]. Progress in Chemistry, 2013, 25(05): 821-831.
[13] Ma Ye, Chen Jianmin, Wang Lin. Characteristics and Formation Mechanisms of Atmospheric Organosulfates [J]. Progress in Chemistry, 2012, 24(11): 2277-2286.
[14] Zhou Ying, Lin Yuanhua, Greta R. Patzke. Synchrotron Radiation for the Study of Hydrothermal Formation Mechanisms of Oxide Nanomaterials [J]. Progress in Chemistry, 2012, 24(08): 1583-1591.
[15] Hua Weijie, Gao Bin, Luo Yi. First-Principle Simulation of Soft X-Ray Spectroscopy [J]. Progress in Chemistry, 2012, 24(06): 964-980.