中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (5): 883-894 DOI: 10.7536/PC200660 Previous Articles   

• Original article •

Micro/Nanomotors on the Way to Intelligent Cancer Diagnosis, Delivery and Therapy

Jiajia Wang1, Huiying Wu1, Renfeng Dong1, Yuepeng Cai1   

  1. 1 South China Normal University, School of Chemistry, Guangzhou 510006, China
  • Received: Revised: Online: Published:
  • Supported by:
    National Natural Science Foundation of China(21671071); National Natural Science Foundation of China(21805096); Guangdong Provincial Science and Technology Project(2017B090917002); Guangdong Provincial Science and Technology Project(2019A050510038); Guangdong Provincial Science and Technology Project(2019B1515120027); China Postdoctoral Science Foundation(2019M662948); South China Normal University Young Teachers Research and Development Fund(18KJ13)
Richhtml ( 28 ) PDF ( 445 ) Cited
Export

EndNote

Ris

BibTeX

Cancers seriously threaten human health due to their relatively high mortality. Early diagnosis and treatment play key roles in improving the cancers cure rate and saving people’s lives. With the development of science and nanotechnology, the advent of micro/nanomotors with self-propelled capabilities has enabled exciting opportunities for the diagnosis and therapy of cancers. The micro/nanomotors can effectively convert diverse energy sources(light, ultrasound, magnetic, electrical, heat, etc.) into their own driving forces, and show encouraging potential for performing various complex and precise tasks in the micrometer or nanometer space. Compared with nanomaterials with passive Brownian motion, micro/nanomotors with active propulsion capabilities endow more flexibility in intelligent cancer diagnosis and treatment. With the development of fabrication strategies, various shapes of micro/nanomotors that can be driven in various modes have been successfully fabricated, such as Janus microspheres, microtubular microrockets and nanowires, etc. These micro/nanomotors have been widely used in different fields of cancer research, as evidenced by significant breakthroughs in the development of a series of intracellular delivery systems, novel diagnosis methods and imaging strategies. In this review, we mainly focus on the tremendous inspiration and opportunities offered by micro/nanomotors in intelligent cancer diagnosis and therapy. Firstly, we demonstrate the recent progress of micro/nanomotors in the fields of cancer diagnostics(ranging from isolation of circulating tumor cells to detection of cancer related biomarkers, such as protein and microRNA), cancer-target delivery(such as drug, interfering RNA, etc.), as well as tumor phototherapy. The challenges and outlooks of micro/nanomotors for future development are also discussed.

Contents

1 Introduction

2 Cancer diagnosis

2.1 Chemical field-driven micro/nanomotor for detection of circulating tumor cells(CTC)

2.2 Physical field-driven micro/nanomotor for detection of intracellular tumor-related biomarkers

3 Targeted drug delivery

3.1 Chemical field-driven motor assist targeted drug delivery

3.2 Physical field-driven motor assist targeted drug delivery

4 Micro/nanomotor-assisted tumor phototherapy

4.1 Photothermal therapy of tumor

4.2 Photodynamic therapy of tumor

5 Conclusion and outlook

Fig. 1 (a) Magnetic nanospheres for capturing and separating circulating cancer cells[41];(b) Schematic illustration of microrockets for capture and isolation of cancer cells[42]
Fig. 2 Schematic diagram of AIB1 detection in living cancer cells using ultrasound(US)-propelled FAM-AIB1-apt-GO/AuNW nanomotors based on “OFF-ON” fluorescence sensing strategy [59]
Fig. 3 Schematic diagram of the intracellular delivery using Janus Pt/CaCO3@HA-CB[6] nanomotors by the dual stimuli-responsive targeting effect[67]
Fig. 4 (a) Schematic illustration of the fabrication of enzyme-powered mesoporous silica nanomotors[73];(b) Schematic of enzyme-powered nanomotors for drug delivery;the nanomotors are driven by the enzymatic conversion of urea; at acidic pH in cancer cells, supramolecular nanovalve opens and releases their cargo[73]
Fig. 5 (a) Schematic diagram of the structure of magnetically driven nanomotors for targeted drug delivery[39];(b) The sperm-hybrid micromotor for targeted drug delivery. The drug-loaded sperm can be guided magnetically, and when the tetrapod of the micromotor hits a tumor spheroid, the tetrapod bends and releases the drug-loaded sperm[75]
Fig. 6 (a) Schematic illustration of the kinds of motion in a 4 MHz acoustic field, including in-plane rotation, axial directional motion, chain assembly, etc.[77];(b) Schematic of nanoporous Au nanomotors for targeted drug delivery under ultrasound field[38];(c) Schematic diagram of the acoustically propelled nanomotors for siRNA delivery, including fluorescence images[78]
Fig. 7 (a) Schematic diagram of a Au-BP@SP Janus nanoparticle for PTT under NIR laser irradiation[87];(b) Schematic diagram of the fabrication of the MPCM-camouflaged Janus mesoporous silica nanomotor(MPCM@JMSNM) and its application in tumor photothermal therapy[88];(c) Schematic illustration for the autonomous photothermal ablation of cancer cells using the nanomotors[89]
Fig. 8 (a) Schematic diagram of the fabrication of RBCM micromotors;(b) Schematic of ultrasound-powered and magnetically guided RBCM micromotors for the PDT[94]
[1]
Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Nikšic M, Bonaventure A, Valkov M, Johnson C J, Estève J. et al. Lancet, 2018, 391:1023.

doi: S0140-6736(17)33326-3 pmid: 29395269
[2]
Chen H B, Gu Z J, An H W, Chen C Y, Chen J, Cui R, Chen S Q, Chen W H, Chen X S, Chen X Y, Chen Z, Ding B Q, Dong Q, Fan Q, Fu T, Hou D Y, Jiang Q, Ke H T, Jiang X Q, Liu G, Li S P, Li T, Liu Z, Nie G J, Ovais M, Pang D W, Qiu N S, Shen Y Q, Tian H Y, Wang C, Wang H, Wang Z Q, Xu H P, Xu J F, Yang X L, Zhu S, Zheng X C, Zhang X Z, Zhao Y B, Tan W H, Zhang X, Zhao Y L. Sci. China Chem., 2018, 61(12):1503.

doi: 10.1007/s11426-018-9397-5
[3]
Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. J. Control. Release, 2015, 200:138.

doi: 10.1016/j.jconrel.2014.12.030
[4]
Wang J J, Dong R F, Wu H Y, Cai Y P, Ren B Y. Nano-Micro Lett., 2020, 12:11.
[5]
Ren B Y, Cai Y P, Dong R F. Chin. Sci. Bull., 2017, 62(2/3):152.

doi: 10.1360/N972016-00843
[6]
Wei Y Y, Chen L, Wang J L, Yu S P, Liu X G, Yang Y Z. Prog. Chem., 2020, 32:381.
( 卫迎迎, 陈琳, 王军丽, 于世平, 刘旭光, 杨永珍. 化学进展, 2020, 32:381.).

doi: 10.7536/PC190739
[7]
Wegner K D, Hildebrandt N. Chem. Soc. Rev., 2015, 44(14):4792.

doi: 10.1039/c4cs00532e pmid: 25777768
[8]
Xia Y N, Li W Y, Cobley C M, Chen J Y, Xia X H, Zhang Q, Yang M X, Cho E C, Brown P K. Acc. Chem. Res., 2011, 44(10):914.

doi: 10.1021/ar200061q
[9]
Du X, Cui H, Zhao Q, Wang J, Chen H, Wang Y. Research, 2019, 2019:1.
[10]
Yu Q L, Li Z, Dou C Y, Zhao Y P, Gong J X, Zhang J F. Prog. Chem., 2020, 32:179.
( 于秋灵, 李政, 窦春妍, 赵义平, 巩继贤, 张健飞. 化学进展, 2020, 32:179.).

doi: 10.7536/PC190802
[11]
Ye Z R, Sun Y Y, Zhang H, Song B, Dong B. Nanoscale, 2017, 9(46):18516.

doi: 10.1039/C7NR05896A
[12]
Zheng J, Dai B H, Wang J Z, Xiong Z, Yang Y, Liu J, Zhan X J, Wan Z H, Tang J Y. Nat. Commun., 2017, 8:1438.

doi: 10.1038/s41467-017-01778-9 pmid: 29127414
[13]
Wang W, Li S X, Mair L, Ahmed S, Huang T J, Mallouk T E. Angew. Chem., 2014, 126(12):3265.

doi: 10.1002/ange.201309629
[14]
Ahmed S, Wang W, Bai L J, Gentekos D T, Hoyos M, Mallouk T E. ACS Nano, 2016, 10(4):4763.

doi: 10.1021/acsnano.6b01344
[15]
Hu N, Wang L F, Zhai W H, Sun M M, Xie H, Wu Z G, He Q. Macromol. Chem. Phys., 2018, 219(5):1700540.

doi: 10.1002/macp.v219.5
[16]
Li J X, Angsantikul P, Liu W J, Esteban-Fernández de Ávila B, Chang X C, Sandraz E, Liang Y Y, Zhu S Y, Zhang Y, Chen C R, Gao W W, Zhang L F, Wang J. Adv. Mater., 2018, 30(2):1704800.

doi: 10.1002/adma.v30.2
[17]
Jiang J Z, Guo M H, Yao F Z, Li J, Sun J J. RSC Adv., 2017, 7(11):6297.

doi: 10.1039/C6RA25162E
[18]
Calvo-Marzal P, Sattayasamitsathit S, Balasubramanian S, Windmiller J R, Dao C, Wang J. Chem. Commun., 2010, 46(10):1623.

doi: 10.1039/b925568k
[19]
Su Y J, Ge Y, Liu L M, Zhang L N, Liu M, Sun Y Y, Zhang H, Dong B. ACS Appl. Mater. Interfaces, 2016, 8(6):4250.

doi: 10.1021/acsami.6b00012
[20]
Mou F Z, Chen C R, Ma H R, Yin Y X, Wu Q Z, Guan J G. Angew. Chem. Int. Ed., 2013, 52(28):7208.

doi: 10.1002/anie.201300913
[21]
Jiao J P, Xu D D, Liu Y H, Zhao W W, Zhang J H, Zheng T T, Feng H H, Ma X. Micromachines, 2018, 9(2):83.

doi: 10.3390/mi9020083
[22]
Ji Y X, Lin X K, Zhang H Y, Wu Y J, Li J B, He Q. Angew. Chem. Int. Ed., 2019, 58(13):4184.

doi: 10.1002/anie.v58.13
[23]
Wang J J, Dong R F, Yang Q X, Wu H Y, Bi Z J, Liang Q Y, Wang Q L, Wang C, Mei Y F, Cai Y P. Nanoscale, 2019, 11(35):16592.

doi: 10.1039/C9NR04295D
[24]
Zha F J, Wang T W, Luo M, Guan J G. Micromachines, 2018, 9(2):78.

doi: 10.3390/mi9020078
[25]
Xu B R, Mei Y F. Sci. Bull., 2017, 62(8):525.

doi: 10.1016/j.scib.2017.04.003
[26]
Tian Z A, Zhang L N, Fang Y F, Xu B R, Tang S W, Hu N, An Z H, Chen Z, Mei Y F. Adv. Mater., 2017, 29(13):1604572.

doi: 10.1002/adma.201604572
[27]
Paxton W F, Kistler K C, Olmeda C C, Sen A, St Angelo S K, Cao Y Y, Mallouk T E, Lammert P E, Crespi V H. J. Am. Chem. Soc., 2004, 126(41):13424.

doi: 10.1021/ja047697z
[28]
Li J, Xiao Q, Jiang J Z, Chen G N, Sun J J. RSC Adv., 2014, 4(52):27522.

doi: 10.1039/c4ra02959c
[29]
Wang J Z, Xiong Z, Zhan X J, Dai B H, Zheng J, Liu J, Tang J Y. Adv. Mater., 2017, 29(30):1701451.

doi: 10.1002/adma.201701451
[30]
Li J X, Liu W J, Wang J Y, Rozen I, He S, Chen C R, Kim H G, Lee H J, Lee H B R, Kwon S H, Li T L, Li L Q, Wang J, Mei Y F. Adv. Funct. Mater., 2017, 27(24):1700598.

doi: 10.1002/adfm.v27.24
[31]
Ahmed S, Wang W, Mair L O, Fraleigh R D, Li S X, Castro L A, Hoyos M, Huang T J, Mallouk T E. Langmuir, 2013, 29(52):16113.

doi: 10.1021/la403946j
[32]
Li T L, Zhang A N, Shao G B, Wei M S, Guo B, Zhang G Y, Li L Q, Wang W. Adv. Funct. Mater., 2018, 28(25):1870173.

doi: 10.1002/adfm.v28.25
[33]
Li L Q, Wang J Y, Li T L, Song W P, Zhang G Y. J. Appl. Phys., 2015, 117(10):104308.

doi: 10.1063/1.4915114
[34]
Jiang H R, Yoshinaga N, Sano M. Phys. Rev. Lett., 2010, 105(26):268302.

doi: 10.1103/PhysRevLett.105.268302
[35]
Wang J J, Wu H Y, Liu X Y, Liang Q Y, Bi Z J, Wang Z C, Cai Y P, Dong R F. Adv. Intell. Syst., 2020, 2(3):1900159.

doi: 10.1002/aisy.v2.3
[36]
Liu R, Sen A. J. Am. Chem. Soc., 2011, 133(50):20064.

doi: 10.1021/ja2082735
[37]
Kagan D, Benchimol M J, Claussen J C, Chuluun-Erdene E, Esener S, Wang J. Angew. Chem. Int. Ed., 2012, 51(30):7519.

doi: 10.1002/anie.201201902
[38]
Garcia-Gradilla V, Sattayasamitsathit S, Soto F, Kuralay F, Yardımcı C, Wiitala D, Galarnyk M, Wang J. Small, 2014, 10(20):4154.

doi: 10.1002/smll.201401013 pmid: 24995778
[39]
Gao W, Kagan D, Pak O S, Clawson C, Campuzano S, Chuluun-Erdene E, Shipton E, Fullerton E E, Zhang L F, Lauga E, Wang J. Small, 2012, 8(3):460.

doi: 10.1002/smll.201101909
[40]
Soper S A, Brown K, Ellington A, Frazier B, Garcia-Manero G, Gau V, Gutman S I, Hayes D F, Korte B, Landers J L, Larson D, Ligler F, Majumdar A, Mascini M, Nolte D, Rosenzweig Z, Wang J, Wilson D. Biosens. Bioelectron., 2006, 21(10):1932.

doi: 10.1016/j.bios.2006.01.006
[41]
Wen C Y, Wu L L, Zhang Z L, Liu Y L, Wei S Z, Hu J, Tang M, Sun E Z, Gong Y P, Yu J, Pang D W. ACS Nano, 2014, 8(1):941.

doi: 10.1021/nn405744f
[42]
Balasubramanian S, Kagan D, Jack Hu C M, Campuzano S, Lobo-Castañon M J, Lim N, Kang D Y, Zimmerman M, Zhang L F, Wang J. Angew. Chem. Int. Ed., 2011, 50(18):4161.

doi: 10.1002/anie.v50.18
[43]
Chang Z M, Wang Z, Shao D, Yue J, Xing H, Li L, Ge M F, Li M Q, Yan H Z, Hu H Z, Xu Q B, Dong W F. ACS Appl. Mater. Interfaces, 2018, 10(13):10656.

doi: 10.1021/acsami.7b19325
[44]
Lee H, Choi M, Lim J, Jo M, Han J Y, Kim T M, Cho Y. Theranostics, 2018, 8(2):505.

doi: 10.7150/thno.21967
[45]
Zhao L, Liu Y, Xie S Z, Ran P, Wei J J, Liu Q J, Li X H. Chem. Eng. J., 2020, 382:123041.

doi: 10.1016/j.cej.2019.123041
[46]
Stobiecka M, Chalupa A. J. Phys. Chem. B, 2015, 119(41):13227.

doi: 10.1021/acs.jpcb.5b07778
[47]
Gribko A, Künzel J, Wünsch D, Lu Q, Nagel S M, Knauer S K, Stauber R H, Ding G B. Int. J. Nanomed., 2019, 14:4187.

doi: 10.2147/IJN.S198319 pmid: 31289440
[48]
Castañeda A D, Brenes N J, Kondajji A, Crooks R M. J. Am. Chem. Soc., 2017, 139(22):7657.

doi: 10.1021/jacs.7b03648
[49]
Huang L, Li Z C, Huang S Q, Peter Reiss, Li L. Acta Chem. Sinica, 2017, 75:300.
( 黄璐, 李志春, 黄寿强, 李良. 化学学报, 2017, 75:300.).

doi: 10.6023/A16100543
[50]
Zhao X L, Xu L G, Sun M Z, Ma W, Wu X L, Kuang H, Wang L B, Xu C L. Small, 2016, 12(34):4662.

doi: 10.1002/smll.v12.34
[51]
Li S, Xu L G, Ma W, Wu X L, Sun M Z, Kuang H, Wang L B, Kotov N A, Xu C L. J. Am. Chem. Soc., 2016, 138(1):306.

doi: 10.1021/jacs.5b10309
[52]
Zhang L, Liu X Y, Shen J J, Lu X M, Fan Q L, Huang W. Prog. Chem., 2013, 25:1375.

doi: 10.7536/PC121205
( 张磊, 刘晓燕, 沈晶晶, 卢晓梅, 范曲立, 黄维. 化学进展, 2013, 25:1375.).

doi: 10.7536/PC121205
[53]
Lu W J, Chen Y P, Liu Z, Tang W B, Feng Q, Sun J S, Jiang X Y. ACS Nano, 2016, 10(7):6685.

doi: 10.1021/acsnano.6b01903
[54]
Li J X, Esteban-Fernández de Ávila B, Gao W, Zhang L F, Wang J. Sci. Robot., 2017, 2(4):6431.
[55]
Qualliotine J R, Bolat G, Beltrán-Gastélum M, de Ávila B E F, Wang J, Califano J A. Otolaryngol. Neck Surg., 2019, 161(5):814.
[56]
Esteban-Fernández de Ávila B, Martín A, Soto F, Lopez-Ramirez M A, Campuzano S, Vásquez-Machado G M, Gao W W, Zhang L F, Wang J. ACS Nano, 2015, 9(7):6756.

doi: 10.1021/acsnano.5b02807 pmid: 26035455
[57]
Lee K, Lee A, Song B J, Kang C S. World J. Surg. Oncol., 2011, 9:139.

doi: 10.1186/1477-7819-9-139
[58]
Osborne C K, Bardou V, Hopp T A, Chamness G C, Hilsenbeck S G, Fuqua S A W, Wong J, Allred D C, Clark G M, Schiff R. JNCI J. Natl. Cancer Inst., 2003, 95(5):353.

doi: 10.1093/jnci/95.5.353
[59]
Beltrán-Gastélum M, Esteban-Fernández de Ávila B, Gong H, Venugopalan P L, Hianik T, Wang J, Subjakova V. ChemPhysChem, 2019, 20(23):3177.

doi: 10.1002/cphc.201900844 pmid: 31639248
[60]
De Lena M, Latorre A, Calabrese P, Catino A, Lorusso V, Mazzei A, Aloe A. J. Chemother., 2000, 12(4):367.

pmid: 10949988
[61]
Singal P K, Iliskovic N. N Engl J. Med., 1998, 339(13):900.

doi: 10.1056/NEJM199809243391307
[62]
Takemura G, Fujiwara H. Prog. Cardiovasc. Dis., 2007, 49(5):330.

pmid: 17329180
[63]
Krischke M, Hempel G, Völler S, André N, D’Incalci M, Bisogno G, Köpcke W, Borowski M, Herold R, Boddy A V, Boos J. Cancer Chemother. Pharmacol., 2016, 78(6):1175.

doi: 10.1007/s00280-016-3174-8
[64]
Barenholz Y C. J. Control. Release, 2012, 160(2):117.

doi: 10.1016/j.jconrel.2012.03.020
[65]
Brambilla D, Luciani P, Leroux J C. J. Control. Release, 2014, 190:9.

doi: 10.1016/j.jconrel.2014.03.056 pmid: 24794899
[66]
Szatrowski T P, Nathan C F. Cancer Res. 1991, 51:794.

pmid: 1846317
[67]
Choi H, Hwang B W, Park K M, Kim K S, Hahn S K. Part. Part. Syst. Charact., 2020, 37(1):1900418.

doi: 10.1002/ppsc.v37.1
[68]
Sattayasamitsathit S, Kou H H, Gao W, Thavarajah W, Kaufmann K, Zhang L F, Wang J. Small, 2014, 10(14):2830.

doi: 10.1002/smll.201303646 pmid: 24706367
[69]
Gao W, Dong R F, Thamphiwatana S, Li J X, Gao W W, Zhang L F, Wang J. ACS Nano, 2015, 9(1):117.

doi: 10.1021/nn507097k
[70]
de Ávila B E F, Angsantikul P, Li J X, Angel Lopez-Ramirez M, Ramírez-Herrera D E, Thamphiwatana S, Chen C R, Delezuk J, Samakapiruk R, Ramez V, Obonyo M, Zhang L F, Wang J. Nat. Commun., 2017, 8:272.

doi: 10.1038/s41467-017-00309-w
[71]
Li J X, Thamphiwatana S, Liu W J, Esteban-Fernández de Ávila B, Angsantikul P, Sandraz E, Wang J X, Xu T L, Soto F, Ramez V, Wang X L, Gao W W, Zhang L F, Wang J. ACS Nano, 2016, 10(10):9536.

doi: 10.1021/acsnano.6b04795
[72]
Wu Z G, Li L, Yang Y R, Hu P, Li Y, Yang S Y, Wang L V, Gao W. Sci. Robot., 2019, 4(32):eaax0613.

doi: 10.1126/scirobotics.aax0613
[73]
Llopis-Lorente A, García-Fernández A, Murillo-Cremaes N, Hortelão A C, Patiño T, Villalonga R, SancenÓn F, Martínez-Máñez R, Sánchez S. ACS Nano, 2019, 13(10):12171.

doi: 10.1021/acsnano.9b06706 pmid: 31580642
[74]
Tang S S, Zhang F Y, Gong H, Wei F N, Zhuang J, Karshalev E, Esteban-Fernández de Ávila B, Huang C Y, Zhou Z D, Li Z X, Yin L, Dong H F, Fang R H, Zhang X J, Zhang L F, Wang J. Sci. Robot., 2020, 5(43):eaba6137.

doi: 10.1126/scirobotics.aba6137
[75]
Xu H F, Medina-Sánchez M, Magdanz V, Schwarz L, Hebenstreit F, Schmidt O G. ACS Nano, 2018, 12(1):327.

doi: 10.1021/acsnano.7b06398
[76]
Jiao X Y, Wang Z M, Xiu J D, Dai W H, Zhao L, Xu T L, Du X, Wen Y Q, Zhang X J. Appl. Mater. Today, 2020, 18:100504.
[77]
Wang W, Castro L A, Hoyos M, Mallouk T E. ACS Nano, 2012, 6(7):6122.

doi: 10.1021/nn301312z pmid: 22631222
[78]
Esteban-Fernández de Ávila B, Angell C, Soto F, Lopez-Ramirez M A, Báez D F, Xie S B, Wang J, Chen Y. ACS Nano, 2016, 10(5):4997.

doi: 10.1021/acsnano.6b01415 pmid: 27022755
[79]
Zhang Z J, Wang J, Chen C Y. Adv. Mater., 2013, 25(28):3869.

doi: 10.1002/adma.v25.28
[80]
Jaque D, Martínez Maestro L, del Rosal B, Haro-Gonzalez P, Benayas A, Plaza J L, Martín Rodríguez E, García Solé J. Nanoscale, 2014, 6(16):9494.

doi: 10.1039/c4nr00708e pmid: 25030381
[81]
Li C X, Zhang Y F, Li Z M, Mei E C, Lin J, Li F, Chen C G, Qing X L, Hou L Y, Xiong L L, Hao H, Yang Y, Huang P. Adv. Mater., 2018, 30(8):1870049.

doi: 10.1002/adma.v30.8
[82]
Dolmans D E J G J, Fukumura D, Jain R K. Nat. Rev. Cancer, 2003, 3(5):380.

pmid: 12724736
[83]
Luo G F, Chen W H, Lei Q, Qiu W X, Liu Y X, Cheng Y J, Zhang X Z. Adv. Funct. Mater., 2016, 26(24):4339.

doi: 10.1002/adfm.v26.24
[84]
Chen W H, Luo G F, Qiu W X, Lei Q, Liu L H, Wang S B, Zhang X Z. Biomaterials, 2017, 117:54.

doi: 10.1016/j.biomaterials.2016.11.057
[85]
Maity S, Downen L N, Bochinski J R, Clarke L I. Polymer, 2011, 52(7):1674.

doi: 10.1016/j.polymer.2011.01.062
[86]
Schachoff R, Selmke M, Bregulla A P, Cichos F, Rings D, Chakraborty D, Kroy K, Günther K, Henning-Knechtel A, Sperling E, Mertig M. diffusion-fundamentals.org. 2015, 23:1.
[87]
Yang P P, Zhai Y G, Qi G B, Lin Y X, Luo Q, Yang Y, Xu A P, Yang C, Li Y S, Wang L, Wang H. Small, 2016, 12(39):5423.

doi: 10.1002/smll.v12.39
[88]
Xuan M J, Shao J X, Gao C Y, Wang W, Dai L R, He Q. Angew. Chem. Int. Ed., 2018, 57(38):12463.

doi: 10.1002/anie.201806759
[89]
Choi H, Lee G H, Kim K S, Hahn S K. ACS Appl. Mater. Interfaces, 2018, 10(3):2338.

doi: 10.1021/acsami.7b16595
[90]
Maas A L, Carter S L, Wileyto E P, Miller J, Yuan M, Yu G Q, Durham A C, Busch T M. Cancer Res., 2012, 72(8):2079.

doi: 10.1158/0008-5472.CAN-11-3744
[91]
Sahu A, Choi W I, Tae G. Adv. Therap., 2018, 1(4):1800026.

doi: 10.1002/adtp.v1.4
[92]
Liu K, Xing R R, Zou Q L, Ma G H, Möhwald H, Yan X H. Angew. Chem. Int. Ed., 2016, 55(9):3036.

doi: 10.1002/anie.201509810
[93]
Chatterjee D K, Fong L S, Zhang Y. Adv. Drug Deliv. Rev., 2008, 60(15):1627.

doi: 10.1016/j.addr.2008.08.003
[94]
Gao C Y, Lin Z H, Wang D L, Wu Z G, Xie H, He Q. ACS Appl. Mater. Interfaces, 2019, 11(26):23392.

doi: 10.1021/acsami.9b07979
[95]
You Y Q, Xu D D, Pan X, Ma X. Appl. Mater. Today, 2019, 16:508.
[96]
Yu M Z, Zhao K L, Zhu X H, Tang S Y, Nie Z, Huang Y, Zhao P, Yao S Z. Biosens. Bioelectron., 2017, 95:41.

doi: 10.1016/j.bios.2017.03.065
[97]
Izadifar Z, Babyn P, Chapman D. Ultrasound Med. Biol., 2017, 43(6):1085.

doi: S0301-5629(17)30052-2 pmid: 28342566
[98]
Sammet S. Abdom. Radiol., 2016, 41(3):444.

doi: 10.1007/s00261-016-0680-4
[99]
Hardell L, Sage C. Biomed. Pharmacother., 2008, 62(2):104.

doi: 10.1016/j.biopha.2007.12.004
[100]
Laakso I, Morimoto R, Heinonen J, Jokela K, Hirata A. Phys. Med. Biol., 2017, 62(17):6980.

doi: 10.1088/1361-6560/aa81fe pmid: 28791963
[101]
Harden R N, Remble T A, Houle T T, Long J F, Markov M S, Gallizzi M A. Pain Pract., 2007, 7(3):248.

pmid: 17714104
[1] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[2] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[3] Xiaofeng Chen, Kaiyuan Wang, Fangming Liang, Ruiqi Jiang, Jin Sun. Exosomes Drug Delivery Systems and Their Application in Tumor Treatment [J]. Progress in Chemistry, 2022, 34(4): 773-786.
[4] Zhenxing Li, Zhiwang Luo, Ping Wang, Zhenqiang Yu, Erqiang Chen, Helou Xie. Luminescent Liquid Crystalline Polymers: Molecular Fabrication, Structure-Properties and Their Applications [J]. Progress in Chemistry, 2022, 34(4): 787-800.
[5] Meng Wang, He Song, Yifei Zhu. Stimuli-Responsive Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(12): 2588-2603.
[6] Lingxiang Guo, Juping Li, Zhiyang Liu, Quan Li. Photosensitizers with Aggregation-Induced Emission for Mitochondrion-Targeting Photodynamic Therapy [J]. Progress in Chemistry, 2022, 34(11): 2489-2502.
[7] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[8] Zilin Zhu, Zhongxian Fan, Mengzhao Miao, Huaiyi Huang. Photodynamic Therapy of Hypoxic Tumors with Ir(Ⅲ) Complexes [J]. Progress in Chemistry, 2021, 33(9): 1473-1481.
[9] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[10] Mingxin Zheng, Min Zeng, Xi Chen, Jinying Yuan. Structures and Applications of Photo-Responsive Shape-Changing Liquid Crystal Polymers [J]. Progress in Chemistry, 2021, 33(6): 914-925.
[11] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[12] Wenjie Liu, Kaihui Liu, Yanwei Zhang, Liang Wang, Mengyi Zhang, Jing Li. The Mechanism of Glycosylation in SARS-CoV-2 Infection and Application in Drug Development [J]. Progress in Chemistry, 2021, 33(4): 524-532.
[13] Yunxue Wu, Hengyi Zhang, Yu Liu. Application of Azobenzene Derivative Probes in Hypoxia Cell Imaging [J]. Progress in Chemistry, 2021, 33(3): 331-340.
[14] Fei Ren, Jianbing Shi, Bin Tong, Zhengxu Cai, Yuping Dong. Near Infrared Fluorescent Dyes with Aggregation-Induced Emission [J]. Progress in Chemistry, 2021, 33(3): 341-354.
[15] Xinyu Wang, Fuping Zhao, Ru Zhang, Ziru Sun, Shengnan Liu, Qingzhi Gao. Development of Hypoxia Inducible Factor-1 Small Molecule Inhibitors as Antitumor Agents [J]. Progress in Chemistry, 2021, 33(12): 2259-2269.