English
新闻公告
More
化学进展 2011, Vol. 23 Issue (01): 213-220 前一篇   后一篇

• 综述与评论 •

生物医用类壳层可脱落纳米粒子

任天斌, 冯玥, 董海青, 李兰, 李永勇   

  1. 同济大学 材料科学与工程学院&先进材料与纳米生物医学研究院 上海 200092
  • 收稿日期:2010-06-01 修回日期:2010-08-01 出版日期:2011-01-20 发布日期:2011-09-02
  • 作者简介:e-mail: inano_donghq@tongji.edu.cn; yongyong_li@tongji.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.30800230),上海市科技发展基金重点纳米专项(No.0852nm03600),上海市自然科学基金(No.10ZR1432100)和上海市科委纳米专项(No.0952nm04800)资助

Sheddable Nanoparticles for Biomedical Application

Ren Tianbin, Feng Yue, Dong Haiqing, Li Lan, Li Yongyong   

  1. School of Material Science and Engineering, The Institute for Advanced Materials & Nano Biomedicine, Tongji University, Shanghai 200092, China
  • Received:2010-06-01 Revised:2010-08-01 Online:2011-01-20 Published:2011-09-02

长循环纳米粒子的亲水壳层虽能有效延长纳米粒子在体内的循环时间,但到达靶向部位后壳层会大大制约其与细胞膜的作用,并延缓药物的释放。壳层可脱落纳米粒子可很好地解决长循环纳米粒子壳层这一问题,提高药物的生物利用度,其设计与制备具有很大的研究意义。本文介绍了不同类型的壳层可脱落纳米粒子,包括pH敏感型、氧化还原敏感型、酶解型等,着重阐述了壳层可脱落纳米粒子的设计机理和应用优势,并综述了国内外生物医用类壳层可脱落纳米粒子的研究进展与发展方向。

The development of new intelligent drug carrier is one of the most critical challenges in cancer treatment.Nano-vehicles such as liposomes,polymeric micelles and lipoplexes are extensively investigated for this purpose.For successful drug delivery,one prerequisite is the long circulating time in vivo.Nanoparticles which used hydrophilic polymers as the “stealth” coating materials can prolong the circulating time via preventing the vehicles from the clearance by blood proteins and being uptaken by macrophages.However,hydrophilic coatings of nanoparticles may hamper the drug release and interaction with target cell after localizing at the pathological site,limiting the therapeutic effect.Presently,this dilemma could be circumvented by the development of the sheddable nanoparticles.Sheddable nanoparticles,which are capable of shedding their “outer layers” when needed,may facilitate the drug release as well as the interaction with the target cell.Herein,we present an overview of the recent work on sheddable nanoparticles with different “shedding” mechanisms,including pH-sensitivity,redox sensitivity and enzyme digestion,with an emphasis on their designs and biomedical applications.In addition,recent advances and perspectives of the sheddable nanoparticles are included.

中图分类号: 

()

[1] Torchilin V P. Nat. Rev. Drug. Discov., 2005, 4: 145—160
[2] Xiong S D, Li L, Jiang J, Tong L P, Wu S L, Xu Z S, Chu P K. Biomaterials, 2010, 31: 2673—2685
[3] Matsumoto S, Christie R J, Nishiyama N, Miyata K, Ishii A, Oba M, Koyama H, Yamasaki Y, Kataoka K. Biomacromolecules, 2009, 10: 119—127
[4] Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. J. Control. Release, 2000, 65: 271—284
[5] Torchilin V P, Trubetskoy V S. Adv. Drug. Deliv. Rev., 1995, 16: 141—155
[6] 李晓然(Li X R), 袁晓燕(Yuan X Y). 化学进展(Progress in Chemistry), 2007, 19: 973—981
[7] Metselaar J M, Bruin P, de Boer L W T, de Vringer T, Snel C, Oussoren C, Wauben M H M, Crommelin D J A, Storm G, Hennink W E. Bioconjugate Chem., 2003, 14: 1156—1164
[8] Boomer J A, Inerowicz H D, Zhang Z Y, Bergstrand N, Edwards K, Kim J M, Thompson D H. Langmuir, 2003, 19: 6408—6415
[9] Romberg B, Hennink W E, Storm G. Pharmaceutical Research, 2008, 25: 55—71
[10] Park C, Lim J, Yun M, Kim C. Angew. Chem. Int. Ed., 2008, 47: 2959—2963
[11] Martin G R, Jain R K. Cancer Res., 1994, 54: 5670—5674
[12] Engin K, Leeper D B, Cater J R, Thistlethwaite A J, Tupchong L, Mcfarlane J D. Int. J. Hyperther, 1995, 11: 211—216
[13] Van Sluis R, Bhujwalla Z M, Raghunand N, Ballesteros P, Alvarez J, Cerdan S, Galons J P, Gillies R J. Magn. Reson. Med., 1999, 41: 743—750
[14] Grunwald J, Rejtar T, Sawant R, Wang Z X, Torchilin V P. Bioconjugate Chem., 2009, 20: 1531—1537
[15] Torchilin V P. Adv. Drug. Deliv. Rev., 2008, 60: 548—558
[16] Masson C, Garinot M, Mignet N, Wetzer B, Mailhe P, Scherman D, Bessodes M. J. Control. Release, 2004, 99: 423—434
[17] Sawant R M, Hurley J P, Salmaso S, Kale A, Tolcheva E, Levchenko T S, Torchilin V P. Bioconjugate Chem., 2006, 17: 943—949
[18] Walker G F, Fella C, Pelisek J, Fahrmeir J, Boeckle S, Ogris M, Wagner E. Mol. Ther., 2005, 11: 418—425
[19] Lin S, Du F S, Wang Y, Ji S P, Liang D H, Yu L, Li Z C. Biomacromolecules, 2008, 9: 109—115
[20] Prabaharan M, Grailer J J, Pilla S, Steeber D A, Gong S Q. Biomaterials, 2009, 30: 5757—5766
[21] Rihova B, Etrych T, Pechar M, Jelinkova M, Stastny M, Hovorka O, Kovar M, Ulbrich K. J. Control. Release, 2001, 74: 225—232
[22] Yoo H S, Lee E A, Park T G. J. Control. Release, 2002, 82: 17—27
[23] Kale A A, Torchilin V P. Polym. Sci. Ser. A, 2009, 51: 730—737
[24] Jeong J H, Kim S W, Park T G. Bioconjugate Chem., 2003, 14: 473—479
[25] Oishi M, Nagatsugi F, Sasaki S, Nagasaki Y, Kataoka K. ChemBioChem, 2005, 6: 718—725
[26] Oishi M, Sasaki S, Nagasaki Y, Kataoka K. Biomacromolecules, 2003, 4: 1426—1432
[27] Knorr V, Ogris M, Wagner E. Pharm. Res-Dord., 2008, 25: 2937—2945
[28] Ding C X, Gu J X, Qu X Z, Yang Z Z. Bioconjugate Chem., 2009, 20: 1163—1170
[29] Kirpotin D, Hong K L, Mullah N, Papahadjopoulos D, Zalipsky S. Febs Lett., 1996, 388: 115—118
[30] Zhang J X, Zalipsky S, Mullah N, Pechar M, Allen T M. Pharm. Res-Dord., 2004, 49: 185—198
[31] Auguste D T, Armes S P, Brzezinska K R, Deming T J, Kohn J, Prud'homme R K. Biomaterials, 2006, 27: 2599—2608
[32] Sun H L, Guo B N, Cheng R, Meng F H, Liu H Y, Zhong Z Y. Biomaterials, 2009, 30: 6358—6366
[33] Klaikherd A, Nagamani C, Thayumanavan S. J. Am. Chem. Soc., 2009, 131: 4830—4838
[34] Oishi M, Hayama T, Akiyama Y, Takae S, Harada A, Yarnasaki Y, Nagatsugi F, Sasaki S, Nagasaki Y, Kataoka K. Biomacromolecules, 2005, 6: 2449—2454
[35] Takae S, Miyata K, Oba M, Ishii T, Nishiyama N, Itaka K, Yamasaki Y, Koyama H, Kataoka K. J. Am. Chem. Soc., 2008, 130: 6001—6009
[36] Maeda T, Fujimoto K. Colloid Surface B, 2006, 49: 15—21
[37] Hatakeyama H, Ito E, Akita H, Oishi M, Nagasaki Y, Futaki S, Harashima H. J. Control. Release, 2009, 139: 127—132
[38] Ishida T, Ichikawa T, Ichihara M, Sadzuka Y, Kiwada H. J. Control. Release, 2004, 95: 403—412
[39] Romberg B, Oussoren C, Snel C J, Carstens M G, Hennink W E, Storm G. Biochimica et Biophysica Acta-Biomembranes, 2007, 1768: 737—743
[40] Romberg B, Metselaar J M, de Vringer T, Motonaga K,den Bosch J J K, Oussoren C, Storm G, Hennink W E. Bioconjugate Chem., 2005, 16: 767—774
[41] Romberg B, Flesch F M, Hennink W E, Storm G. Int. J. Pharm., 2008, 355: 108—113
[42] Xu H, Deng Y H, Chen D W, Hong W W, Lu Y, Dong X H. J. Control. Release, 2008, 130: 238—245
[43] Dong H Q, Li Y Y, Cai S J, Zhuo R X, Zhang X Z, Liu L J. Angew. Chem., 2008, 120: 5655—5658

[1] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[2] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[3] 陈晓峰, 王开元, 梁芳铭, 姜睿祺, 孙进. 外泌体递药系统及其在肿瘤治疗中的应用[J]. 化学进展, 2022, 34(4): 773-786.
[4] 杨冬, 高可奕, 杨百勤, 雷蕾, 王丽霞, 薛朝华. 微流控合成体系的装置分类及其用于纳米粒子的制备[J]. 化学进展, 2021, 33(3): 368-379.
[5] 张芬铭, 田语舒, 郑绩, 陈堃, 冯岸超, 张立群. 基于PHPMA的生物医用功能高分子[J]. 化学进展, 2020, 32(2/3): 331-343.
[6] 英启炜, 廖建国, 吴民行, 翟智皓, 刘欣茹. 球形生物活性玻璃作为运输载体的研究[J]. 化学进展, 2019, 31(5): 773-782.
[7] 刘一寰, 胡欣, 朱宁, 郭凯. 基于微流控技术制备微/纳米粒子材料[J]. 化学进展, 2018, 30(8): 1133-1142.
[8] 张咚咚, 刘敬民, 刘瑶瑶, 党梦, 方国臻, 王硕. 纳米粒子在药物传递中的应用[J]. 化学进展, 2018, 30(12): 1908-1919.
[9] 喻志超, 汤淳, 姚丽, 高庆, 徐祖顺, 杨婷婷. 聚合物基模板制备中空介孔材料[J]. 化学进展, 2018, 30(12): 1899-1907.
[10] 毕洪梅, 韩晓军. 磁应答型药物递送载体的设计与构建[J]. 化学进展, 2018, 30(12): 1920-1929.
[11] 何天稀, 梁琼麟, 王九, 罗国安. 脂质体类药物载体的微流控制备[J]. 化学进展, 2018, 30(11): 1734-1748.
[12] 李平, 董阿力德尔图, 孙梓嘉, 高歌. N-卤胺类高分子与纳米抗菌材料的制备及应用[J]. 化学进展, 2017, 29(2/3): 318-328.
[13] 陈璐扬, 赵瑾, 龙丽霞, 侯信, 原续波*. 肿瘤免疫治疗中的生物医用载体[J]. 化学进展, 2017, 29(10): 1195-1205.
[14] 韩冬琳, 亓洪昭, 赵瑾, 龙丽霞, 任玉, 原续波. 增强纳米药物载体肿瘤内渗透分布的研究进展[J]. 化学进展, 2016, 28(9): 1397-1405.
[15] 杜鑫, 赵彩霞, 黄洪伟, 温永强, 张学记. 树枝状多孔二氧化硅纳米粒子的制备及其在先进载体中的应用[J]. 化学进展, 2016, 28(8): 1131-1147.
阅读次数
全文


摘要

生物医用类壳层可脱落纳米粒子