English
新闻公告
More
化学进展 2018, Vol. 30 Issue (12): 1920-1929 DOI: 10.7536/PC180413 前一篇   后一篇

• 综述 •

磁应答型药物递送载体的设计与构建

毕洪梅1, 韩晓军2*   

  1. 1. 黑龙江八一农垦大学理学院 大庆 163319;
    2. 城市水资源与水环境国家重点实验室 哈尔滨工业大学化工与化学学院 哈尔滨 150001
  • 收稿日期:2018-04-04 修回日期:2018-06-23 出版日期:2018-12-15 发布日期:2018-09-26
  • 通讯作者: 韩晓军 E-mail:hanxiaojun@hit.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21503072,21773050)、学成引进人才项目(No.XDB-2017-19)和国家留学基金委项目(No.20163035)资助

Design and Fabrication of Magnetically Responsive Drug Delivery Carriers

Hongmei Bi1, Xiaojun Han2*   

  1. 1. College of Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China;
    2. State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
  • Received:2018-04-04 Revised:2018-06-23 Online:2018-12-15 Published:2018-09-26
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21503072, 21773050), the Program of Introduction of Talents in University(No. XDB-2017-19), and China Scholarship Council(No. 20163035).
复合磁性生物材料的发展和应用已引起生物医学领域的极大关注。磁性纳米粒子因其易功能化而具有靶向药物传递、可控药物释放及磁成像特性逐渐成为药物传递和新型诊疗领域最有前途的材料之一。基于磁性纳米粒子或掺杂的铁氧化物构建的远程触发磁性载药递送系统,有望实现在运输过程中携载药物不泄露的情况下,提高药物递送效率且对病灶周围的健康细胞无毒或低毒性。为构建理想的可控靶向磁性药物递送系统,多种材料或配体可以与磁性纳米粒子复合来构建更安全有效的磁性药物递送系统。一些生物分子、聚合物及天然产物等通过与磁性纳米粒子相结合,构建出可用于药物传递且具有独特性质的磁性复合新材料。迄今为止,具有磁场应答能力的磁性药物递送载体已经在远程控制药物释放领域得到了长足发展。本文总结了近年来磁性药物递送载体作为远程控制治疗体系在设计与构建上的研究进展。重点关注了磷脂分子、聚合物、多孔微纳米材料以及天然产物等与其构建的复合材料,并对当前磁性复合特定给药载体的优点、局限及发展前景等做了简要阐述。
Development and application of hybrid magnetic biomaterials has been attracting great attention in biomedical applications. Magnetic nanoparticles (MNPs) have emerged as a promising theranostic tool for diagnostic imaging, drug delivery and novel therapeutics because of their functionalization, targeted delivery, controllable drug release and image-guided capabilities. Remotely triggered magnetic drug delivery systems based on MNPs or doped iron oxides can enhance the drug delivery efficiency to the cancerous regions with low toxicity or without toxicity to the surrounding healthy cells. In order to fabricate safer and more effective magnetic drug delivery systems, different materials or ligands such as biomolecules, polymers even natural extractive are combined with MNPs by this hybrid approach, which has created entirely new advanced compositions with truly unique properties for drug delivery. So far, the responsive nano-structured magnetic drug delivery carriers have been extensively explored for remotely controlled drug release although there are still some difficulties and challenges. In this review, we summarize the recent advances in the design and fabrication of hybrid magnetic drug delivery carriers as remotely controlled therapeutic systems with a focus on the materials for delivery carriers fabrication including phospholipid molecules, polymers, mesoporous micro-nanomaterials, natural extractive, etc. In addition, the advantages, limits and prospects of current hybrid targeted magnetic drug delivery carriers are also briefly summarized.
Contents
1 Introduction
2 Fabrication and application of magnetic response drug delivery carriers
2.1 Drug delivery carriers based on phospholipid and magnetic nanoparticles
2.2 Drug delivery carriers based on polymer and magnetic nanoparticles
2.3 Drug delivery carriers based on porous micro-nanomaterial and magnetic nanoparticles
2.4 Drug delivery carriers based on natural extractive and magnetic nanoparticles
3 Conclusion

中图分类号: 

()
[1] Dobson J, Drug. Develop. Res., 2006, 67:55.
[2] Sun C, Lee J S. H, Zhang M Q. Adv. Drug Deliv. Rev., 2008, 60:1252.
[3] Veiseh O, Gunn J W, Zhang M Q. Adv. Drug Deliv. Rev., 2010, 62:284.
[4] Zhu L, Zhou Z Y, Mao H, Yang L L. Nanomedicine, 2017, 12:73.
[5] Huang J, Li Y C, Orza A, Lu Q, Guo P, Wang L Y, Yang L, Mao H. Adv. Funct. Mater., 2016, 26:3818.
[6] Barenholz Y. Nat. Nanotechnol., 2012, 7:483.
[7] Wang H, Agarwal P, Zhao S T, Yu J H, Lu X B, He X M. Nat. Commun., 2016, 7.
[8] Gilchrist R K, Medal R, Shorey W D, Hanselman R C, Parrott J C, Taylor C B. Ann. Surg., 1957, 146:596.
[9] Gneveckow U, Jordan A, Scholz R, Bruss V, Waldofner N, Ricke J, Feussner A, Hildebrandt B, Rau B, Wust P. Med. Phys., 2004, 31:1444.
[10] Lu F, Popa A, Zhou S W, Zhu J J, Samia A C S. Chem. Commun., 2013, 49:11436.
[11] Leal M P, Torti A, Riedinger A, La Fleur R, Petti D, Cingolani R, Bertacco R, Pellegrino T. ACS Nano, 2012, 6:10535.
[12] Kong S D, Zhang W Z, Lee J H, Brammer K, Lal R, Karin M, Jin S H. Nano Lett., 2010, 10:5088.
[13] Riedinger A, Guardia P, Curcio A, Garcia M A, Cingolani R, Manna L, Pellegrino T. Nano Lett., 2013, 13:2399.
[14] Park H, Park H J, Kim J A, Lee S H, Kim J H, Yoon J, Park T H. J. Microbiol. Meth., 2011, 84:41.
[15] Nguyen T K, Duong H T T, Selvanayagam R, Boyer C, Barraud N. Sci. Rep., 2015, 5:18385.
[16] Yakacki C M, Satarkar N S, Gall K, Likos R, Hilt J Z. J. App. Poly. Sci., 2009, 112:3166.
[17] Chan A, Orme R P, Fricker R A, Roach P. Adv. Drug. Deliv. Rev., 2013, 65:497.
[18] Liu T Y, Hu S H, Liu D M, Chen S Y, Chen I W. Nano Today, 2009, 4:52.
[19] Brazel C S. Pharm. Res., 2009, 26:644.
[20] Lu Y, Aimetti A A, Langer R, Gu Z. Nat. Rev. Mater., 2017, 2.
[21] Naatz H, Lin S J, Li R B, Jiang W, Ji Z X, Chang C H, Koser J, Thoming J, Xia T, Nel A E, Madler L, Pokhrel S. ACS Nano, 2017, 11:501.
[22] Kralj S, Potrc T, Kocbek P, Marchesan S, Makovec D. Curr. Med. Chem., 2017, 24:454.
[23] Allen T M, Cullis P R. Adv. Drug. Deliv. Rev., 2013, 65:36.
[24] Allen T M, Cullis P R. Science, 2004, 303:1818.
[25] Martina M S, Fortin J P, Menager C, Clement O, Barratt G, Grabielle-Madelmont C, Gazeau F, Cabuil V, Lesieur S. J. Am. Chem. Soc., 2005, 127:10676.
[26] Sau T K, Urban A S, Dondapati S K, Fedoruk M, Horton M R, Rogach A L, Stefani F D, Radler J O, Feldmann J. Colloid. Surface. A, 2009, 342:92.
[27] Chen Y J, Bose A, Bothun G D. ACS Nano, 2010, 4:3215.
[28] Spera R, Apollonio F, Liberti M, Paffi A, Merla C, Pinto R, Petralito S. Colloid. Surface. B, 2015, 131:136.
[29] Pradhan P, Giri J, Banerjee R, Bellare J, Bahadur D. J. Magn. Magn. Mater., 2007, 311:208.
[30] Qiu D, An X Q. Colloid. Surface. B, 2013, 104:326.
[31] Nappini S, Bonini M, Bombelli F B, Pineider F, Sangregorio C, Baglioni P, Norden B. Soft Matter, 2011, 7:1025.
[32] Nappini S, Fogli S, Castroflorio B, Bonini M, Bombelli F B, Baglioni P. J. Mater. Chem. B, 2016, 4:716.
[33] Clares B, Biedma-Ortiz R A, Saez-Fernandez E, Prados J C, Melguizo C, Cabeza L, Ortiz R, Arias J L. Eur. J. Pharm. Biopharm., 2013, 85:329.
[34] Nappini S, Bombelli F B, Bonini M, Norden B, Baglioni P. Soft Matter, 2010, 6:154.
[35] Nappini S, Bonini M, Ridi F, Baglioni P. Soft Matter, 2011, 7:4801.
[36] Pradhan P, Giri J, Rieken F, Koch C, Mykhaylyk O, Doblinger M, Banerjee R, Bahadur D, Plank C. J. Control. Release, 2010, 142:108.
[37] Basoglu H, Bilgin M D, Demir M M. Photodiagn. Photodyn., 2016, 13:81.
[38] Spera R, Apollonio F, Liberti M, Paffi A, Merla C, Pinto R, Petralito S. Colloid. Surface. B, 2015, 131:136.
[39] Bi H M, Fu D G, Wang L, Han X J. ACS Nano, 2014, 8:3961.
[40] Bi H M, Ma S H, Li Q, Han X J. J. Mater. Chem. B, 2016, 4:3269.
[41] Bi H M, Han X J. Chem. Phys. Lett., 2018, 706:455.
[42] Zhang Y, Wang X J, Wang L, Yu M, Han X J. Bioelectrochemistr, 2014, 95:29.
[43] Wang J G, Wang L, Liu S Q, Han X J, Huang W M, Wang E K. Biophys. Chem., 2003, 106:31.
[44] Cheng W L, Han X J, Wang E K, Dong S J. Electroanalysis, 2004, 16:127.
[45] Huang W M, Zhang Z L, Han X J,Wang J G, Tang J L, Dong S J, Wang E K. Biophys. Chem., 2002, 99:271.
[46] Huang W M, Zhang Z L, Han X J, Tang J L, Peng Z Q, Dong S J, Wang E K. Biophys. Chem., 2001, 94:165.
[47] Su Y C, Zong W, Zhao X L, Ma S H, Han X J. RSC Adv., 2015, 5:82247.
[48] Zhang X N, Zong W, Hu Y, Luo N, Cheng W L, Han X J. J. Microencapsul., 2016, 33:663.
[49] Zong W, Hu Y, Su Y C, Luo N, Zhang X N, Li Q C, Han X J, J. Microencapsul., 2016, 33:257.
[50] Yang F, Ma S H, Zong W, Luo N, Lv M L, Hu Y, Zhou L L, Han X J. RSC Advances, 2015, 5:51271.
[51] Zhang X N, Zong W, Bi H M, Zhao K, Fuhs T, Hu Y, Cheng W L, Han X J. Eur. J. Pharmacol. Biopharm., 2018, 127:177.
[52] Nappini S, Al Kayal T, Berti D, Norden B, Baglioni P. J. Phys. Chem. Lett., 2011, 2:713.
[53] Salvatore A, Montis C, Berti D, Baglioni P. ACS Nano, 2016, 10:7749.
[54] Joniec A, Sek S, Krysinski P. Chem. Eur. J., 2016, 22:17715.
[55] Amstad E, Kohlbrecher J, Muller E, Schweizer T, Textor M, Reimhult E. Nano Lett., 2011, 11:1664.
[56] Ito A, Fujioka M, Yoshida T, Wakamatsu K, Ito S, Yamashita T, Jimbow K, Honda H. Cancer Sci., 2007, 98:424.
[57] Mornet S, Vasseur S, Grasset F, Duguet E. J. Mater. Chem., 2004, 14:2161.
[58] Lin W, Xie X Y, Yang Y F, Fu X D, Liu H, Yang Y, Deng J P. Drug. Deliv., 2016, 23:3436.
[59] Chen Y J, Chen Y, Xiao D, Bose A, Deng R T, Bothun G D. Colloid. Surface. B, 2014, 116:452.
[60] Podaru G, Ogden S, Baxter A, Shrestha T, Ren S, Thapa P, Dani R K, Wang H, Basel M T, Prakash P, Bossmann S H, Chikan V. J. Phys. Chem. B, 2014, 118:11715.
[61] Szlezak M, Nieciecka D, Joniec A, Pekala M, Gorecka E, Emo M, Stebe M J, Krysinski P, Bilewicz R. ACS App. Mater. Inter., 2017, 9:2796.
[62] Xing P Y, Zhao Y L. Adv. Mater., 2016, 28:7304.
[63] Shenhar R, Norsten T B, Rotello V M. Adv. Mater., 2005, 17:657.
[64] Hammad M, Nica V, Hempelmann R. J. Nanopart. Res., 2016, 18(8):234.
[65] Li F Y, Lu J X, Kong X Q, Hyeon T, Ling D S. Adv. Mater., 2017, 29(14).
[66] Malekzadeh A M, Ramazani A, Rezaei S J T, Niknejad H. J. Colloid. Interface. Sci., 2017, 490:64.
[67] Nakamura M, Katagiri K, Koumoto K. J. Colloid. Interface Sci., 2010, 341:64.
[68] Lee S H, Song Y, Hosein I D, Liddell C M. J. Mater. Chem., 2009, 19:350.
[69] Lu Z H, Prouty M D, Guo Z H, Golub V O, Kumar C, Lvov Y M. Langmuir, 2005, 21:2042.
[70] Li L L, Chen D, Ding M H, Tang F Q, Meng X W, Ren J, Zhang L. Acta Phys-Chim. Sin., 2007, 23:1969.
[71] Hu S H, Tsai C H, Liao C F, Liu D M, Chen S Y. Langmuir, 2008, 24:11811.
[72] Katagiri K, Nakamura M, Koumoto K. ACS App. Mater. Inter., 2010, 2:768.
[73] Kono K, Ozawa T, Yoshida T, Ozaki F, Ishizaka Y, Maruyama K, Kojima C, Harada A, Aoshima S. Biomaterials, 2010, 31:7096.
[74] Kono K, Murakami T, Yoshida T, Haba Y, Kanaoka S, Takagishi T, Aoshima S, Bioconjugate. Chem., 2005, 16:1367.
[75] Katagiri K, Imai Y, Koumoto K, Kaiden T, Kono K, Aoshima S, Small, 2011, 7:1683.
[76] Guo M A, Que C L, Wang C H, Liu X Z, Yan H S, Liu K L, Biomaterials, 2011, 32:185.
[77] Kim D H, Vitol E A, Liu J, Balasubramanian S, Gosztola D J, Cohen E E, Novosad V, Rozhkova E A, Langmuir, 2013, 29:7425.
[78] Liu T Y, Hu S H, Liu K H, Shaiu R S, Liu D M, Chen S Y, Langmuir, 2008, 24:13306.
[79] Goswami M M. Sci. Rep., 2016, 6:35721.
[80] Saikia C, Das M K, Ramteke A, Maji T K. Int. J. Bio. Macromol., 2016, 93:1121.
[81] Sundar S, Mariappan R, Piraman S, Powder. Technol., 2014, 266:321.
[82] Pham X N, Nguyen T P, Pham T N, Tran T T N, Tran T V T. Adv. Nat. Sci-Nanosci., 2016, 7.
[83] Tartaj P, Morales M D, Veintemillas-Verdaguer S, Gonzalez-Carreno T, Serna C J. J. Phys. D-Appl. Phys., 2003, 36:R182.
[84] Liu X S, Li H, Jin Q, Ji J. Small, 2014, 10:4230.
[85] Benyettou F, Flores J A O, Ravaux F, Rezgui R, Jouiad M, Nehme S I, Parsapur R K, Olsen J C, Selvam P, Trabolsi A. Chem-Eur. J., 2016, 22:17018.
[86] Liu Q, Zhang J X, Sun W, Xie Q R B, Xia W L, Gu H C. Int. J. Nanomed., 2012, 7:999.
[87] Guo X Y, Mao F F, Wang W J, Yang Y, Bai Z M. ACS Appl. Mater. Interface., 2015, 7:14983.
[88] Vivero-Escoto J L, Slowing Ⅱ, Trewyn B G, Lin V S Y. Small, 2010, 6:1952.
[89] Jiang W, Wu J, Tian R B, Jiang W. J. Porous. Mat., 2017, 24:257.
[90] Yao Y J, Miao S D, Yu S M, Ma L P, Sun H Q, Wang S B. J. Colloid. Interf. Sci., 2012, 379:20.
[91] Luong T T, Knoppe S, Bloemen M, Brullot W, Strobbe R, Locquet J P, Verbiest T. J. Magn. Magn. Mater., 2016, 416:194.
[92] Chen P J, Hu S H, Hsiao C S, Chen Y Y, Liu D M, Chen S Y. J. Mater. Chem., 2011, 21:2535.
[93] Peng H X, Hu C Y, Hu J L, Tian X Y, Wu T Y. Micropor. Mesopor. Mat., 2016, 226:140.
[94] Thomas C R, Ferris D P, Lee J H, Choi E, Cho M H, Kim E S, Stoddart J F, Shin J S, Cheon J, Zink J I. J. Am. Chem. Soc., 2010, 132:10623.
[95] Fusaro L, Locci E, Lai A, Luhmer M. J. Phys. Chem. B, 2008, 112:15014.
[96] Helminger M, Wu B H, Kollmann T, Benke D, Schwahn D, Pipich V, Faivre D, Zahn D, Colfen H. Adv. Funct. Mater., 2014, 24:3187.
[97] Sharma R K, Gulati S, Mehta S. J. Chem. Educ., 2012, 89:1316.
[98] Shahwan T, Abu Sirriah S, Nairat M, Boyaci E, Eroglu A E, Scott T B, Hallam K R. Chem. Eng. J., 2011, 172:258.
[99] Wang T, Lin J J, Chen Z L, Megharaj M, Naidu R. J. Clean. Prod., 2014, 83:413.
[100] Sun Q, Cai X, Li J W, Zheng M, Chen Z L, Yu C P, Colloid. Surface. A., 2014, 444:226.
[101] Jayaramudu T, Raghavendra G M, Varaprasad K, Raju K M, Sadiku E R, Kim J. J. Appl. Polym. Sci., 2016, 133.
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[3] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[4] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[5] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[6] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[7] 黄帅, 陶钰, 黄银亮. 基于液晶聚合物的光致形变复合材料[J]. 化学进展, 2022, 34(9): 2012-2023.
[8] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[9] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[10] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[11] 付素芊, 汪英, 刘凯, 贺军辉. 微纳多孔聚合物薄膜的制备与应用[J]. 化学进展, 2022, 34(2): 241-258.
[12] 李庚, 李洁, 姜泓宇, 梁效中, 郭鹍鹏. 力刺激响应发光聚合物[J]. 化学进展, 2022, 34(10): 2222-2238.
[13] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[14] 陈永杭, 李欣芳, 余伟江, 王幽香. 刺激响应聚合物微针在经皮给药中的应用[J]. 化学进展, 2021, 33(7): 1152-1158.
[15] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.