English
新闻公告
More
化学进展 2021, Vol. 33 Issue (3): 368-379 DOI: 10.7536/PC200556 前一篇   后一篇

• 综述 •

微流控合成体系的装置分类及其用于纳米粒子的制备

杨冬1,2,*(), 高可奕1,2, 杨百勤1,2, 雷蕾1,2, 王丽霞1,2, 薛朝华3,*()   

  1. 1 陕西科技大学轻化工助剂化学与技术教育部重点实验室 西安 710021
    2 陕西科技大学化学与化工学院 西安 710021
    3 陕西科技大学轻工科学与工程学院 西安 710021
  • 收稿日期:2020-05-24 修回日期:2020-06-18 出版日期:2021-03-20 发布日期:2020-09-30
  • 通讯作者: 杨冬, 薛朝华
  • 作者简介:
    * Corresponding author e-mail: (Dong Yang); (Chaohua Xue)
  • 基金资助:
    国家自然科学基金项目(21505089); 国家博士后第61批面上基金二等(202101710)

Classification of Microfluidic System and Applications in Nanoparticles Synthesis

Dong Yang1,2,*(), Keyi Gao1,2, Baiqin Yang1,2, Lei Lei1,2, Lixia Wang1,2, Chaohua Xue3,*()   

  1. 1 Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology,Xi’an 710021, China
    2 College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology,Xi’an 710021, China
    3 College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology,Xi’an 710021, China
  • Received:2020-05-24 Revised:2020-06-18 Online:2021-03-20 Published:2020-09-30
  • Contact: Dong Yang, Chaohua Xue
  • Supported by:
    the National Natural Science Foundation of China(21505089); the 61th Batch of National Postdoctoral Funds Second-Class, China(202101710)

微流控技术由于其反应装置小型化的特点,可精准地控制物质间交换,适用于纳米材料的合成,尤其是无机纳米粒子的精确调控。微流控装置可根据具体实验需求来设计和调整,完成多个实验步骤的集成,实现多个化学反应以及复合材料的制备。本文根据不同标准,对微流控反应装置进行了分类,介绍其特点,并阐明了装置中流体的流动状态,枚举了微流控装置在材料合成领域的范例,阐明了微流控体系的优势,可能存在的不足及解决办法,最后对微流控合成体系的发展进行了展望。

Microfluidic synthesis technique is attracting considerable interest in the synthesis of inorganic nanomaterials, especially in precise regulation of nanoparticles, due to their miniaturization of reaction apparatus, precisely controlling the substances exchange. Given the demand for detailed experiments, the micro-reactors can be redesigned and adjusted, as well as multiple experimental steps integrated into one system to perform multi-step chemical reactions and realize the preparation of composite materials. In summary, various micro-reactors are briefly introduced, different flow statuses of the fluid in the micro-reactors are discussed, and the typical microfluidic synthesis applications in nanomaterial synthesis were exemplified in this review. Finally, the development trend in the microfluidic system is summarized.

Contents

1 Introduction

2 Microfluidic system

2.1 Microchannel reactor

2.2 Tubular microreactor

3 Fluid status in microfluidic

3.1 Monophasic laminar fluid

3.2 Polyphase droplet flow

4 Microfluidic synthesis of nanoparticles

4.1 Noble metal nanoparticles

4.2 Quantum dots

4.3 Silica nanoparticles

4.4 Magnetic nanoparticles

4.5 Hybrid nanoparticles

5 Conclusion and outlook

()
图1 用于纳米材料合成的微流控合成装置示意图:包括液体输送装置、微反应器、收集装置。(A)微通道内液体流动状态,(B)不同形貌的纳米粒子
Fig.1 Schematic showing components of the microfluidic system used for nanoparticle synthesis.(A) fluid flow in microchannels,(B) nanoparticles of different morphologies
图2 刻蚀聚合物材料(PMMA) 制备微通道反应器[24]
Fig.2 The microchannel reactor prepared by etching polymethyl methacrylate polymer materials[24]
图3 具有混合功能的管式微流控合成装置[47,48],(A)Y型混合微流控装置,(B)螺杆模式管状混合微流控装置
Fig.3 Tubular microfluidic reaction device with mixing function[47,48],(A) Y-type hybrid microfluidic device,(B) screw-type tubular hybrid microfluidic device
图4 微流控装置中液体的流动状态示意图:(A) 单相层流状态的流体,(B) 液滴状态的流体
Fig.4 Schematic of liquid flow in a microfluidic device:(A) monophasic laminar fluid,(B) polyphase droplet flow
图5 管式反应器内的流体处于层流状态,呈抛物线形速度分布
Fig.5 Fluid in the tube reactor fell within a laminar regime, exhibiting a parabolic velocity profile
图6 微流控装置生成液滴的示意图:(A) T型结构,(B) 十字型结构,(C) Y型结构,(D) 同轴流动结构
Fig.6 Schematic of generating droplets by microfluidic device:(A) T-type structure,(B) cross-type structure,(C) Y-type structure,(D) coaxial flow structure
表1 无量纲数计算公式及物理意义描述
Table 1 Calculation formula and physical meaning description of dimensionless quantity
图7 直接生成反应液滴的微流控装置并促进了液滴的混合[64]
Fig.7 Microfluidic device that directly generates reactive droplets and promotes droplet mixing[64]
图8 碰撞混合后生成反应液滴的微流控装置[77]
Fig.8 Microfluidic device for generating reaction liquid droplets after collision mixing[77]
图9 (A) 三相流体和试剂添加过程的图像,(B) 可用于多步反应的微流控合成装置示意图[78]
Fig.9 (A) Images of three-phase fluid stream and process of reagent addition,(B) schematic of a microfluidic device that can be used for multi-step reactions[78]
表2 采用不同微流控装置制备的量子点
Table 2 Quantum dots prepared using different microfluidic devices
图10 (A) 氧化铁核颗粒表面开始生产金核,(B) 生长成封闭的壳,(C) 生长到厚的金壳[77]
Fig.10 (A) Starting from initial growth of gold nuclei on the surface of the iron oxide core particles,(B) over a closed shell,(C) to a thick gold shell[77]
[1]
Kim H, Beack S, Han S, Shin M, Lee T, Park Y, Kim K S, Yetisen A K, Yun S H, Kwon W, Hahn S K. Adv. Mater., 2018, 30(10):1701460.
[2]
Yang D, Ma J Z, Xue C H, Wang L X, Wang X. J. Pharm. Biomed. Anal., 2018, 159:119.
[3]
Chimene D, Alge D L, Gaharwar A K. Adv. Mater., 2015, 27(45):7261.
[4]
Biju V. Chem. Soc. Rev., 2014, 43(3):744.
[5]
Yang D, Ma J Z, Zhang Q L, Li N N, Yang J C, Raju P A, Peng M L, Luo Y L, Hui W L, Chen C, Cui Y L. Anal. Chem., 2013, 85(14):6688.
[6]
Kim S H, Lee S Y, Yang S M, Yi G R. NPG Asia Mater., 2011, 3(1):25.
[7]
He T X, Lang Q L, Wang J, Luo G A. Progress in Chemistry, 2018, 30:1734.
何天稀, 梁琼麟, 王九, 罗国安. 化学进展, 2018, 30:1734.
[8]
Rawlings A E, Bramble J P, Tang A A S, Somner L A, Monnington A E, Cooke D J, McPherson M J, Tomlinson D C, Staniland S S. Chem. Sci., 2015, 6(10):5586.
[9]
Ma J P, Lee S M Y, Yi C Q, Li C W. Lab Chip, 2017, 17(2):209.
[10]
Wang J, Shang L R, Cheng Y, Ding H B, Zhao Y J, Gu Z Z. Small, 2015, 11(32):3890.
[11]
Shang L R, Fu F F, Cheng Y, Yu Y R, Wang J, Gu Z Z, Zhao Y J. Small, 2017, 13(4):1600286.
[12]
Jensen K F. AIChE J., 2017, 63(3):858.
[13]
Liu Y H, Hu X, Zhu N, Guo K. Progress in Chemistry, 2018, 30:1133.
刘一寰, 胡欣, 朱宁, 郭凯. 化学进展, 2018, 30:1133.
[14]
Thiele M, Knauer A, Malsch D, Csáki A, Henkel T, Köhler J M, Fritzsche W. Lab Chip, 2017, 17(8):1487.
[15]
Wang K, Lu Y C, Tostado C P, Yang L, Luo G S. Chem. Eng. J., 2013, 227:90.
[16]
Mazutis L, Vasiliauskas R, Weitz D A. Macromol. Biosci., 2015, 15(12):1764.
[17]
Kwon B H, Lee K G, Park T J, Kim H, Lee T J, Lee S J, Jeon D Y. Small, 2012, 8(21):3257.
[18]
Koh C G, Zhang X L, Liu S J, Golan S, Yu B, Yang X J, Guan J J, Jin Y, Talmon Y, Muthusamy N. J. Control. Release, 2010, 141(1):62.
[19]
Liu D F, Cito S, Zhang Y Z, Wang C F, Sikanen T M, Santos H A. Adv. Mater., 2015, 27(14):2298.
[20]
Pessoa A C S N, Sipoli C C, de la Torre L G. Lab Chip, 2017, 17(13):2281.
[21]
Hao N J, Nie Y, Closson A B, Zhang J X J. J. Colloid Interface Sci., 2019, 539:87.
[22]
Wang H Z, Nakamura H, Uehara M, Miyazaki M, Maeda H. Chem. Commun., 2002(14):1462.
[23]
Zhao C X, Middelberg A P J. RSC Adv., 2013, 3(44):21227.
[24]
Yang C H, Wang L S, Chen S Y, Huang M C, Li Y H, Lin Y C, Chen P F, Shaw J F, Huang K S. Int. J. Pharm., 2016, 510(2):493.
[25]
Stroock A D, Dertinger S K, Ajdari A, Mezic I, Stone H A, Whitesides G M. Science., 2002, 295:647.
[26]
Belliveau N M, Huft J, Lin P J, Chen S, Leung A K, Leaver T J, Wild A W, Lee J B, Taylor R J, Tam Y K, Hansen C L, Cullis P R. Mol. Ther. Nucleic Acids, 2012, 1:e37.
[27]
Kašpar O, Koyuncu A H, Pittermannová A, Ulbrich P, Tokárová V. Biomed. Microdevices, 2019, 21(4):88.
[28]
Uson L, Arruebo M, Sebastian V, Santamaria J. Chem. Eng. J., 2018, 340:66.
[29]
Sebastián V, Jensen K F. Nanoscale, 2016, 8(33):15288.
[30]
Ma H Y, Zhang M. J. Mater. Sci., 2014, 49(23):8123.
[31]
Riche C T, Zhang C C, Gupta M, Malmstadt N. Lab Chip, 2014, 14(11):1834.
[32]
Eichler M, Klages C P, Lachmann K. Surface Functionalization of Microfluidic Devices. In: Microsystems for Pharmatechnology, 2016.59.
[33]
Abou Hassan A, Sandre O, Cabuil V, Tabeling P. Chem. Commun., 2008, (15):1783.
[34]
Di D H, Qu X, Liu C, Fang L, Quan P. Int. J. Pharm., 2019, 572:118831.
[35]
Seibt S, Mulvaney P, Förster S. Colloids Surfaces A: Physicochem. Eng. Aspects, 2019, 562:263.
[36]
Seibt S, With S, Bernet A, Schmidt H W, Förster S. Langmuir, 2018, 34(19):5535.
[37]
Abou-Hassan A, Bazzi R, Cabuil V. Angew. Chem., 2009, 121(39):7316.
[38]
Hassan N, Cabuil V, Abou-Hassan A. Angew. Chem. Int. Ed., 2013, 52(7):1994.
[39]
Glasgow W, Fellows B, Qi B, Darroudi T, Kitchens C, Ye L F, Crawford T M, Mefford O T. Particuology, 2016, 26:47.
[40]
Liu Z D, Wakihara T, Oshima K, Nishioka D, Hotta Y, Elangovan S P, Yanaba Y, Yoshikawa T, Chaikittisilp W, Matsuo T, Takewaki T, Okubo T. Angew. Chem. Int. Ed., 2015, 54(19):5683.
[41]
Xu L, Srinivasakannan C, Peng J H, Zhang D, Chen G. Chem. Eng. Process.: Process. Intensif., 2015, 93:44.
[42]
Jiao M X, Zeng J F, Jing L H, Liu C Y, Gao M Y. Chem. Mater., 2015, 27(4):1299.
[43]
Zhang D T, Wu F X, Peng M H, Wang X Y, Xia D G, Guo G S. J. Am. Chem. Soc., 2015, 137(19):6263.
[44]
Ray A, Varma V B, Jayaneel P J, Sudharsan N M, Wang Z P, Ramanujan R V. Sensor Actuat. B: Chem., 2017, 242:760.
[45]
Ferraro D, Lin Y, Teste B, Talbot D, Malaquin L, Descroix S, Abou-Hassan A. Chem. Commun., 2015, 51(95):16904.
[46]
Varma V B, Wu R G, Wang Z P, Ramanujan R V. Lab Chip, 2017, 17(20):3514.
[47]
Wan Z, Yang H W, Luan W L, Tu S T, Zhou X G. Nanoscale Res. Lett., 2010, 5(1):130.
[48]
Wang K, Zhang H M, Shen Y, Adamo A, Jensen K F. React. Chem. Eng., 2018, 3(5):707.
[49]
Gomez L, Sebastian V, Irusta S, Ibarra A, Arruebo M, Santamaria J. Lab Chip, 2014, 14(2):325.
[50]
Niu G D, Zhou M, Yang X, Park J, Lu N, Wang J G, Kim M J, Wang L D, Xia Y N. Nano Lett., 2016, 16(6):3850.
[51]
Wong W K, Yap S K, Lim Y C, Khan S A, Pelletier F, Corbos E C. React. Chem. Eng., 2017, 2(5):636.
[52]
Niu G D, Zhang L, Ruditskiy A, Wang L D, Xia Y N. Nano Lett., 2018, 18(6):3879.
[53]
Chu L Y, Utada A, Shah R, Kim J W, Weitz D. Angew. Chem. Int. Ed., 2007, 46(47):8970.
[54]
Nabavi S A, Vladisavljevi G T, Bandulasena M V, Arjmandi-Tash O, Manovi V. J. Colloid Interface Sci., 2017, 505:315.
[55]
Bandulasena M V, Vladisavljevi G T, Benyahia B. Chem. Eng. Sci., 2019, 195:657.
[56]
Zou M H, Wang J, Yu Y R, Sun L Y, Wang H, Xu H, Zhao Y J. ACS Appl. Mater. Interfaces, 2018, 10(40):34618.
[57]
Xu L, Peng J H, Yan M, Zhang D, Shen A Q. Chem. Eng. Process.: Process. Intensif., 2016, 102:186.
[58]
Yagyu H, Tanabe Y, Takano S, Hamamoto M. Micro Nano Lett., 2017, 12(8):536.
[59]
Manshadi M K D, Mohammadi M, Monfared L K, Sanati-Nezhad A. Biotechnol. Bioeng., 2020, 117(2):580.
[60]
Hafermann L, Michael Köhler J. J. Nanoparticle Res., 2015, 17(2):99.
[61]
Wang K, Zhang H M, Shen Y, Adamo A, Jensen K F. React. Chem. Eng., 2018, 3(5):707.
[62]
Gobert S R L, Kuhn S, Braeken L, Thomassen L C J. Org. Process Res. Dev., 2017, 21(4):531.
[63]
Trachsel F, Günther A, Khan S, Jensen K F. Chem. Eng. Sci., 2005, 60(21):5729.
[64]
Wojnicki M, Luty-Błocho M, Hessel V, CsapÓ E, Ungor D, Fitzner K. Micromachines, 2018, 9(5):248.
[65]
Lignos I, Stavrakis S, Nedelcu G, Protesescu L, de Mello A J, Kovalenko M V. Nano Lett., 2016, 16(3):1869.
[66]
Bannock J H, Krishnadasan S H, Heeney M, de Mello J C. Mater. Horiz., 2014, 1(4):373.
[67]
Kumar K, Nightingale A M, Krishnadasan S H, Kamaly N, Wylenzinska-Arridge M, Zeissler K, Branford W R, Ware E, de Mello A J, de Mello J C. J. Mater. Chem., 2012, 22(11):4704.
[68]
Kim Y H, Zhang L, Yu T, Jin M S, Qin D, Xia Y N. Small, 2013, 9(20):3462.
[69]
Zhou H B, Yao S H. Lab Chip, 2013, 13(5):962.
[70]
Link D R, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng Z D, Cristobal G, Marquez M, Weitz D A. Angew. Chem. Int. Ed., 2006, 45(16):2556.
[71]
Shojaeian M, Hardt S. Appl. Phys. Lett., 2018, 112(19):194102.
[72]
Zukas B G, Gupta N R. Ind. Eng. Chem. Res., 2017, 56(25):7184.
[73]
Ma H Y, Jin N, Zhang P, Zhou Y F, Zhao Y C, Zhang X L, Lü H, Liu J. Chem. Eng. Res. Des., 2019, 144:247.
[74]
Frenz L, El Harrak A, Pauly M, BÉgin-Colin S, Griffiths A, Baret J C. Angew. Chem. Int. Ed., 2008, 47(36):6817.
[75]
Wang Y H, Tumarkin E, Velasco D, Abolhasani M, Lau W, Kumacheva E. Lab Chip, 2013, 13(13):2547.
[76]
Song H, Li H W, Munson M S, van Ha T G, Ismagilov R F. Anal. Chem., 2006, 78(14):4839.
[77]
Ahrberg C D, Wook Choi J, Geun Chung B. Sci. Rep., 2020, 10:1737.
[78]
Nightingale A M, Phillips T W, Bannock J H, de Mello J C. Nat. Commun., 2014, 5:3777.
[79]
Wang Y, Yang Y Z, Chen C, Wang S P, Wang H, Jing W W, Tao N J. ACS Sens., 2020, 5(4):1126.
[80]
Yang Q F, Liu J Y, Chen H P, Wang X X, Hang Q M, Shan Z. Progress in Chemistry, 2011, 23:880.
杨群峰, 刘建云, 陈华萍, 王显祥, 黄乾明, 单志. 化学进展, 2011, 23:880.
[81]
Kim D J, Ha D, Zhou Q T, Thokchom A K, Lim J W, Lee J, Park J G, Kim T. Nanoscale, 2017, 9(27):9622.
[82]
Tofighi G, Gaur A, Doronkin D E, Lichtenberg H, Wang W, Wang D, Rinke G, Ewinger A, Dittmeyer R, Grunwaldt J D. J. Phys. Chem. C, 2018, 122(3):1721.
[83]
Liu C, Wu F, Su Q Q, Qian W P. Progress in Chemistry, 2019, 31(10):1396.
刘畅, 吴峰, 苏倩倩, 钱卫平. 化学进展, 2019, 31(10):1396.
[84]
Kwak C H, Kang S M, Jung E, Haldorai Y, Han Y K, Kim W S, Yu T, Huh Y S. J. Ind. Eng. Chem., 2018, 63:405.
[85]
Huang H, Toit H d, Besenhard M O, Ben Jaber S, Dobson P, Parkin I, Gavriilidis A. Chem. Eng. Sci., 2018, 189:422.
[86]
Zhang X D, Ma S, Li A K, Chen L Y, Lu J W, Geng X M, Xie M, Liang X Y, Wan Y F, Yang P. Appl. Nanosci., 2020, 10:661.
[87]
Bandulasena M V, Vladisavljevi G T, Odunmbaku O G, Benyahia B. Chem. Eng. Sci., 2017, 171:233.
[88]
David S, Robert C R, Richard F, Ben F, Cottam, Ramon Vilar, Andrew J deMello C, Paul Wilde. Mater. Lett., 2007, 61:1146.
[89]
Uson L, Sebastian V, Arruebo M, Santamaria J. Chem. Eng. J., 2016, 285:286.
[90]
Panariello L, Damilos S, du Toit H, Wu G W, Radhakrishnan A N P, Parkin I P, Gavriilidis A. React. Chem. Eng., 2020, 5(4):663.
[91]
Lazarus L L, Riche C T, Marin B C, Gupta M, Malmstadt N, Brutchey R L. ACS Appl. Mater. Interfaces, 2012, 4(6):3077.
[92]
Lazarus L L, Yang A S J, Chu S, Brutchey R L, Malmstadt N. Lab Chip, 2010, 10(24):3377.
[93]
Knauer A, Csáki A, Möller F, Hühn C, Fritzsche W, Köhler J M. J. Phys. Chem. C, 2012, 116(16):9251.
[94]
Thiele M, Soh J Z E, Knauer A, Malsch D, Stranik O, Müller R, Csáki A, Henkel T, Köhler J M, Fritzsche W. Chem. Eng. J., 2016, 288:432.
[95]
Lohse S E, Eller J R, Sivapalan S T, Plews M R, Murphy C J. ACS Nano, 2013, 7(5):4135.
[96]
Calamak S, Ulubayram K. J. Mater. Sci., 2019, 54(10):7541.
[97]
Ye Z R, Wang K, Lou M N, Jia X Q, Xu F Y, Ye G X. Microfluid. Nanofluidics, 2020, 24(5):38.
[98]
Sebastian V, Basak S, Jensen K F. AIChE J., 2016, 62(2):373.
[99]
Wang H L, Niu G D, Zhou M, Wang X, Park J, Bao S X, Chi M F, Cai Z S, Xia Y N. ChemCatChem, 2016, 8(9):1658.
[100]
Hafermann L, Köhler J M. Chem. Eng. Technol., 2015, 38(7):1138.
[101]
Song Y J, Sun Q Q, Zhang T, Jin P Y, Han L. J. Nanoparticle Res., 2010, 12(7):2689.
[102]
Miao J L, Zhang F J. J. Mater. Chem. C, 2019, 7(7):1741.
[103]
Ma F, Li C C, Zhang C Y. J. Mater. Chem. B, 2018, 6(39):6173.
[104]
Li C C, Hu J, Lu M, Zhang C Y. Biosens. Bioelectron., 2018, 122:51.
[105]
Hu Y X, Guo Q S, Liu Y Q, Sun Q J, Meng T H, Zhang R G. Progress in Chemistry, 2017, 29:300.
胡先运, 郭庆生, 刘玉乾, 孙清江, 孟铁宏, 张汝国. 化学进展, 2017, 29:300.
[106]
Knowles K E, Hartstein K H, Kilburn T B, Marchioro A, Nelson H D, Whitham P J, Gamelin D R. Chem. Rev., 2016, 116(18):10820.
[107]
Kubendhiran S, Bao Z, Dave K, Liu R S. ACS Appl. Nano Mater., 2019, 2(4):1773.
[108]
Nakamura H, Yamaguchi Y, Miyazaki M, Maeda H, Uehara M, Mulvaney P. Chem. Commun., 2002,(23):2844.
[109]
Shestopalov I, Tice J D, Ismagilov R F. Lab Chip, 2004, 4(4):316.
[110]
Pan J, El-Ballouli A O, Rollny L, Voznyy O, Burlakov V M, Goriely A, Sargent E H, Bakr O M. ACS Nano, 2013, 7(11):10158.
[111]
Chakrabarty A, Marre S, Landis R F, Rotello V M, Maitra U, Guerzo A D, Aymonier C. J. Mater. Chem. C, 2015, 3(29):7561.
[112]
Wang J M, Zhao H F, Zhu Y C, Song Y J. J. Phys. Chem. C, 2017, 121(6):3567.
[113]
Kwak C H, Park J P, Lee S S, Muruganantham R, Kwon S, Roh C, Kim S W, Huh Y S. J. Nanosci. Nanotechnol., 2018, 18(2):1339.
[114]
Hong L Y, Cheung T L, Rao N X, Ouyang Q, Wang Y, Zeng S W, Yang C B, Dang C, Chong P H J, Liu L W, Law W C, Yong K T. RSC Adv., 2017, 7(58):36819.
[115]
Lignos I, Stavrakis S, Kilaj A, de Mello A J. Small, 2015, 11(32):4009.
[116]
Baek J, Shen Y, Lignos I, Bawendi M G, Jensen K F. Angew. Chem. Int. Ed., 2018, 57(34):10915.
[117]
Ippen C, Schneider B, Pries C, Kröpke S, Greco T, Holländer A. Nanotechnology, 2015, 26(8):085604.
[118]
Yashina A, Lignos I, Stavrakis S, Choo J, de Mello A J. J. Mater. Chem. C, 2016, 4(26):6401.
[119]
Naughton M S, Kumar V, Bonita Y, Deshpande K, Kenis P J A. Nanoscale, 2015, 7(38):15895.
[120]
Tian Z H, Xu J H, Wang Y J, Luo G S. Chem. Eng. J., 2016, 285:20.
[121]
Shu Y, Jiang P, Pang D W, Zhang Z L. Nanotechnology, 2015, 26(27):275701.
[122]
Knossalla J, Mezzavilla S, Schüth F. New J. Chem., 2016, 40(5):4361.
[123]
Chung C K, Shih T R, Chang C K, Lai C W, Wu B H. Chem. Eng. J., 2011, 168(2):790.
[124]
Hao N J, Nie Y, Xu Z, Closson A B, Usherwood T, Zhang J X J. Chem. Eng. J., 2019, 366:433.
[125]
Hao N J, Nie Y, Zhang J X J. ACS Sustainable Chem. Eng., 2018, 6(2):1522.
[126]
Hao N J, Nie Y, Tadimety A, Shen T, Zhang J X J. Biomater. Sci., 2018, 6(12):3121.
[127]
Ju M H, Ji X B, Wang C Q, Shen R W, Zhang L X. Chem. Eng. J., 2014, 250:112.
[128]
Carroll N J, Crowder P F, Pylypenko S, Patterson W, Ratnaweera D R, Perahia D, Atanassov P, Petsev D N. ACS Appl. Mater. Interfaces, 2013, 5(9):3524.
[129]
Nie Y, Hao N J, Zhang J X J. Sci. Rep., 2017, 7:12616.
[130]
Hao N J, Nie Y, Tadimety A, Closson A B, Zhang J X J. Mater. Res. Lett., 2017, 5(8):584.
[131]
Tamtaji M, Mohammadi A. J. Flow Chem., 2019, 9(3):161.
[132]
Liu T H, Chang G, Cao R J, Meng L J. Progress in Chemistry, 2015, 27:601.
刘天辉, 常刚, 曹瑞军, 孟令杰. 化学进展, 2015, 27:601.
[133]
Zhang J L, Hong G Y, Ni J Z. Progress in Chemistry, 2009, 21:880.
张吉林, 洪广言, 倪嘉缵. 化学进展, 2009, 21:880.
[134]
Shviro M, Zitoun D. RSC Adv., 2013, 3(5):1380.
[135]
Eluri R, Paul B. J. Nanoparticle Res., 2012, 14(4):800.
[136]
Clifford D M, El-Gendy A A, Lu A J, Pestov D, Carpenter E E. J. Flow Chem., 2014, 4(3):148.
[137]
Gomez L, Arruebo M, Sebastian V, Gutierrez L, Santamaria J. J. Mater. Chem., 2012, 22(40):21420.
[138]
Hao N J, Nie Y, Xu Z, Zhang J X J. J. Colloid Interface Sci., 2019, 542:370.
[139]
Khan S, Jensen K. Adv. Mater., 2007, 19(18):2556.
[140]
Köhler J M, Romanus H, Hübner U, Wagner J. J. Nanomater., 2014, 2007:1.
[141]
Knauer A, Eisenhardt A, Krischok S, Koehler J M. Nanoscale, 2014, 6(10):5230.
[142]
Xu L, Srinivasakannan C, Peng J H, Yan M, Zhang D, Zhang L B. Appl. Surf. Sci., 2015, 331:449.
[143]
Sachdev S, Maugi R, Davis S, Doak S S, Zhou Z X, Platt M. J. Colloid Interface Sci., 2020, 569:204.
[144]
Tao S, Yang M, Chen H H, Ren M Y, Chen G W. J. Colloid Interface Sci., 2017, 486:16.
[145]
Wang W, Yang C, Cui X Q, Bao Q L, Li C M. Microfluid. Nanofluidics, 2010, 9(6):1175.
[146]
Tian S Z, Fu M, Hoheisel W, Mleczko L. Chem. Eng. J., 2016, 289:365.
[147]
Baek J, Shen Y, Lignos I, Bawendi M G, Jensen K F. Angew. Chem., 2018, 130(34):11081.
[148]
Uehara M, Nakamura H, Maeda H. J. Nanosci. Nanotech., 2009, 9(1):577.
[149]
Knauer A, Thete A, Li S, Romanus H, Csáki A, Fritzsche W, Köhler J M. Chem. Eng. J., 2011, 166(3):1164.
[1] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[2] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[3] 李慧调, 潘建章, 方群. 数字PCR技术的发展及应用[J]. 化学进展, 2020, 32(5): 581-593.
[4] 刘一寰, 胡欣, 朱宁, 郭凯. 基于微流控技术制备微/纳米粒子材料[J]. 化学进展, 2018, 30(8): 1133-1142.
[5] 张咚咚, 刘敬民, 刘瑶瑶, 党梦, 方国臻, 王硕. 纳米粒子在药物传递中的应用[J]. 化学进展, 2018, 30(12): 1908-1919.
[6] 喻志超, 汤淳, 姚丽, 高庆, 徐祖顺, 杨婷婷. 聚合物基模板制备中空介孔材料[J]. 化学进展, 2018, 30(12): 1899-1907.
[7] 毕洪梅, 韩晓军. 磁应答型药物递送载体的设计与构建[J]. 化学进展, 2018, 30(12): 1920-1929.
[8] 李平, 董阿力德尔图, 孙梓嘉, 高歌. N-卤胺类高分子与纳米抗菌材料的制备及应用[J]. 化学进展, 2017, 29(2/3): 318-328.
[9] 陈璐扬, 赵瑾, 龙丽霞, 侯信, 原续波*. 肿瘤免疫治疗中的生物医用载体[J]. 化学进展, 2017, 29(10): 1195-1205.
[10] 杜鑫, 赵彩霞, 黄洪伟, 温永强, 张学记. 树枝状多孔二氧化硅纳米粒子的制备及其在先进载体中的应用[J]. 化学进展, 2016, 28(8): 1131-1147.
[11] 郝锐, 张丛筠, 卢亚, 张东杰, 郝耀武, 刘亚青. 氧化石墨烯/金银纳米粒子复合材料的制备及其SERS效应研究[J]. 化学进展, 2016, 28(8): 1186-1195.
[12] 邱健豪, 何明, 贾明民, 姚建峰. 金属有机骨架材料制备双金属或多金属催化材料及其应用[J]. 化学进展, 2016, 28(7): 1016-1028.
[13] 王昀, 冯岸超, 袁金颖. 刺激响应聚合物在金纳米粒子催化体系中的应用[J]. 化学进展, 2016, 28(7): 1054-1061.
[14] 高党鸽, 梁志扬, 吕斌, 马建中. 细乳液聚合法制备有机/无机纳米复合材料[J]. 化学进展, 2016, 28(7): 1076-1083.
[15] 袁婷联, 蒋莹琰, 王伟. 光热显微术:基于光吸收的单分子成像技术[J]. 化学进展, 2016, 28(5): 607-616.