English
新闻公告
More
化学进展 2018, Vol. 30 Issue (8): 1133-1142 DOI: 10.7536/PC180115 前一篇   后一篇

• 综述 •

基于微流控技术制备微/纳米粒子材料

刘一寰1, 胡欣2, 朱宁1*, 郭凯1*   

  1. 1. 南京工业大学生物与制药工程学院 材料化学工程国家重点实验室 南京 211800;
    2. 南京工业大学材料科学与工程学院 南京 211800
  • 收稿日期:2018-01-19 修回日期:2018-03-08 出版日期:2018-08-15 发布日期:2018-04-09
  • 通讯作者: 朱宁, 郭凯 E-mail:ningzhu@njtech.edu.cn;guok@njtech.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21878145,21504039,21604037,21522604)资助

Microfluidic Synthesis of Micro-and Nanoparticles

Yihuan Liu1, Xin Hu2, Ning Zhu1*, Kai Guo1*   

  1. 1. College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China;
    2. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
  • Received:2018-01-19 Revised:2018-03-08 Online:2018-08-15 Published:2018-04-09
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21878145, 21504039, 21604037, 21522604).
具有特殊性质的微/纳米粒子,在药物传递、吸收分离、光电材料和磁性设备等多个领域具有重要的应用价值。近年来,微流控技术在有机合成、高分子化学以及材料制备等领域表现出传统釜式反应器无法比拟的优势。本文介绍了基于微流控技术制备微/纳米粒子的最新研究进展,包括以单乳液为模板合成球形和非球形聚合物粒子、无机物粒子、贵金属纳米粒子和半导体纳米粒子,以多重乳状液为模板制备壳核粒子、Janus粒子和微囊。
Micro-and nanoparticles with unique properties have broad applications in drug delivery, absorption separation, optical/electrical materials, and magnetic device, etc. Due to the huge volume-to-surface ratio and continuous flow characteristic, remarkable advantages have been made in organic chemistry, polymer synthesis and material preparation by employing microfluidic technology compared with the traditional batch reactor. This review summarizes the recent progress in microfluidic synthesis of micro-and nanoparticles. Microreactor system can precisely monitor and control the particle formation process. By using single emulsion as the template, spherical and non-spherical polymer/inorganic/noble metal/semiconductor particles are fabricated. Multi-emulsions are used as templates for fabricating core shell particles, Janus particles and microcapsules.
Contents
1 Introduction
2 Particle assembly in dispersed phase of single emulsions
2.1 Spherical particles
2.2 Non-spherical particles
3 Particle assembly in dispersed phase of multi-emulsions
3.1 Core-shell particles
3.2 Janus particles
3.3 Microcapsules
4 Conclusion

中图分类号: 

()
[1] Yang P Q, Peng J M, Chu Z Y, Jiang D F, Jin W Q. Biosens. Bioelectron., 2017, 92:709.
[2] Chu Z Y, Shi L, Jin W Q. Biosens. Bioelectron., 2014, 61:422.
[3] Xie C, Zhen X, Lei Q L, Ni R, Pu K Y. Adv. Func. Mater., 2017, 27:1605397.
[4] Li J F, Zhang Y J, Ding S Y, Panneerselvam R, Tian Z Q. Chem. Rev., 2017.
[5] Kristensen A, Yang J K W, Bozhevolnyi S I, Link S, Nordlander P, Halas N J, Mortensen N A. Nat. Rev. Mater., 2016, 2:16088.
[6] Hakala T K, Rekola H T, Vakevainen A I, Martikainen J P, Necada M, Moilanen A J, Torma P. Nat. Commun., 2017, 8:13687.
[7] Wang X, Tang Z. Small, 2017, 13.
[8] Yu J, Rong Y, Kuo C T, Zhou X H, Chiu D T. Anal. Chem., 2017, 89:42.
[9] Xie C, Upputuri P K, Zhen X, Pramanik M, Pu K Y. Biomaterials, 2017, 119:1.
[10] Li Y H, Li N, Pan W, Yu Z Z, Yang L M, Tang B. ACS Appl. Mater. Interfaces, 2017, 9:2123.
[11] Cai Y, Liang P P, Tang Q Y, Yang X Y, Si W L, Huang W, Zhang Q, Dong X C. ACS Nano, 2017, 11:1054.
[12] Yao X X, Niu X X, Ma K X, Huang P, Grothe J, Kaskel S, Zhu Y F. Small, 2017, 13:1602225.
[13] Poon C K, Tang O, Chen X M, Kim B, Hartlieb M, Pollock C A, Hawkett B S, Perrier S. Macromol. Biosci., 2017, 17:1600366.
[14] Liu J X, Yang K G, Qu Y Y, Li S W, Wu Q, Liang Z, Zhang L H, Zhang Y K. Chem. Commun., 2015, 51:3896.
[15] Li W, Sun Y, Yang C C, Yan X M, Guo H, Fu G Q. ACS Appl. Mater. Interfaces, 2015, 7:27188.
[16] Liu H, Ding M D, Ding Z L, Gao C Q, Zhang W Q. Polym. Chem., 2017, 8:3203.
[17] Jones E R, Mykhaylyk O O, Semsarilar M, Boerakker M, Wyman P, Armes S P. Macromolecules, 2016, 49:172.
[18] Plutschack M B, Pieber B, Gilmore K, Seeberger P H. Chem. Rev., 2017, 117:11796.
[19] Marre S, Jensen K F. Chem. Soc. Rev., 2010, 39:1183.
[20] Pastre J C, Browne D L, Ley S V. Chem. Soc. Rev., 2013, 42:8849.
[21] 骆广生(Luo G S), 王凯(Wang K), 王佩坚(Wang P J), 吕阳成(Lv Y C). 化工学报(CIESC J.), 2014, 65:2563.
[22] Nagaki A, Miyazaki A, Yoshida J. Macromolecules, 2010, 43:8424.
[23] Lu Y C, Zhu S, Wang K, Luo G S. Ind. Eng. Chem. Res., 2016, 55:1215.
[24] Elvira K, Solvas X, Woothon R, deMello A. Nat. Chem., 2013, 5:905.
[25] Peng J, Tian C, Zhang L, Cheng Z, Zhu X. Polym. Chem., 2017, 8:1495.
[26] Li Z J, Chen W, Zhang L, Zhang Z, Zhu X. Polym. Chem., 2015, 6:5030.
[27] Zhu N, Huang W, Hu X, Liu Y, Fang Z, Guo K. Chem. Eng. J., 2018, 333:43.
[28] Zhu N, Liu Y, Feng W, Huang W, Zhang Z, Hu X, Fang Z, Li Z J, Guo K. Eur. Polym. J., 2016, 80:234.
[29] Zhu N, Feng W, Zhang Z, Fang Z, Li Z J, Guo K. Polymer, 2015, 80:88.
[30] Hu X, Zhu N, Fang Z, Li Z J, Guo K. Eur. Polym. J., 2016, 80:177.
[31] Zhu N, Hu X, Zhang Y J, Zhang K, Li Z J, Guo K. Polym. Chem., 2016, 7:474.
[32] Hu X, Zhu N, Fang Z, Guo K. React. Chem. Eng., 2017, 2:20.
[33] 汪伟(Wang W), 谢锐(Xie R), 巨晓洁(Ju X J), 褚良银(Chu L Y). 化工学报(CIESC J.), 2014, 65(7):2255.
[34] Brugarolas T, Tu F Q, Lee D Y. Soft Matter, 2013, 9:9046.
[35] Boken J, Soni S K, Kumar D. Crit. Rev. Anal. Chem., 2016, 46:538.
[36] Clegg P S, Tavacoli J W, Wilde P J. Soft Matter, 2016, 12:998.
[37] Ma J P, Lee S M, Yi C W, Li C Q. Lab on a Chip, 2017, 17:209.
[38] Wang J M, Li Y, Wang X Y, Wang J C, Tian H M, Zhao P, Tian Y, Gu Y M, Wang L Q, Wang C Y. Micromachines, 2017, 8:22.
[39] Bramosanti M, Chronopoulou L, Grillo F, Valletta A, Palocci C. Colloids and Surf. A:Physicochem. Eng. Aspects, 2017, 532:369.
[40] Hasani-Sadrabadi M M, Karimkhani V, Majedi F S, van Dersarl J J, Dashtimoghadam E, Afshar-Taromi F, Mirzadeh H, Bertsch A, Jacob K I, Renaud P, Stadler F J, Kim I. Adv. Mater., 2014, 26:3118.
[41] Hasani-Sadrabadi M M, Majedi F S, van Dersarl J J, Dashtimoghadam E, Ghaffarian S R, Bertsch A, Moaddel H, Renaud P. J. Am. Chem. Soc., 2012, 134:18904.
[42] Othman R, Vladisavljevic G T, Nagy Z K. Chem. Eng. Sci., 2015, 137:119.
[43] Othman R, Vladisavljevic G T, Thomas N L, Nagy Z K. Colloids Surf. B Biointerfaces, 2016, 141:187.
[44] Rhee M, Valencia P M, Rodriguez M I, Langer R, Farokhzad O C, Karnik R. Adv. Mater., 2011, 23:H79.
[45] Xu Z Q, Yan B, Riordon J, Zhao Y, Sinton D, Moffitt M G. Chem. Mater., 2015, 27:8094.
[46] Capretto L, Carugo D, Mazzitelli S, Nastruzzi C, Zhang X. Adv. Drug Deliv. Rev., 2013, 65:1496.
[47] Khadka P, Ro J, Kim H, Kim I, Kim J T, Kim H, Cho J M, Yun G, Lee J. Asian J. Pharma. Sci., 2014, 9:304.
[48] Feng Q, Zhang L, Liu C, Li X Y, Hu G Q, Sun J S, Jiang X Y. Biomicrofluidics, 2015, 9:052604.
[49] Wang J D, Chen W W, Sun J S, Liu C, Yin Q F, Zhang L, Xianyu Y L, Shi X H, Hu G Q, Jiang X Y. Lab on a Chip, 2014, 14:1673.
[50] Sun J S, Xianyu Y L, Li M M, Liu W W, Zhang L, Liu D B, Liu C, Hu G Q, Jiang X Y. Nanoscale, 2013, 5:5262.
[51] Feng Q, Liu J P, Li X Y, Chen Q H, Sun J S, Shi X H, Ding B Q, Yu H J, Li Y P, Jiang X Y. Small, 2017, 13:1603109.
[52] Kang X J, Luo C X, Wei Q, Xiong C Y, Chen Q, Chen Y, Ouyang Q. Microflu. Nanoflu., 2013, 15:337.
[53] Lim J M, Bertrand N, Valencia P M, Rhee M, Langer R, Jon S, Farokhzad O C, Karnik R. Nanomedicine:Nanotechnology, Biology, and Medicine, 2014, 10:401.
[54] Ma K, Du X Y, Zhang Y W, Chen S. J. Mater. Chem. C, 2017, 5:9398.
[55] Gomez L, Arruebo M, Sebastian V, Gutierrez L, Santamaria J. J. Mater. Chem., 2012, 22:21420.
[56] Stöber W, Fink A. J. Colloid Interface Sic., 1968, 26:62.
[57] Liu J, Qiao S Z, Liu H, Chen J, Orpe A, Zhao D Y, Lu G Q M. Angew. Chem. Int. Ed., 2011, 50:5947.
[58] Gutierrez L, Gomez L, Irusta S, Arruebo M, Santamaria J. Chem. Eng. J., 2011, 171:674.
[59] Roberts D S, Estrada D, Yagi N, Anglin E J, Chan N A, Sailor M J. Part. Part. Syst. Charact., 2017, 34:1600326.
[60] Sebastian V, Basak S, Jensen K F. AIChE J., 2016, 62:373.
[61] Xu L, Peng J H, Yan M, Zhang D, Shen A Q. Chem. Eng. Processing:Process Intensification, 2016, 102:186.
[62] Bandulasena M V, Vladisavljevic G T, Odunmbaku O G, Benyahia B. Chem. Eng. Sci., 2017, 171:233.
[63] Yang C H, Wang L S, Chen S Y, Huang M C, Li Y H, Lin Y C, Chen P F, Shaw J F, Huang K S. Int. J. Pharm., 2016, 510:493.
[64] 夏文键(Xia W J), 孟令杰(Meng L J). 化学进展(Progress in Chemistry), 2010, 22:2298.
[65] Liu H Y, Zhang H, Wang J, Wei J F, Zhang Y. J. Chem. Tech. Biotech., 2017, 92:2171.
[66] Ko E, Tran V K, Geng Y, Chung W S, Park C H, Kim M K, Jin G H, Seong G H. J. Electroanalytical Chem., 2017, 792:72.
[67] Zhai Z M, Zhang F Q, Chen X Y, Zhong J, Liu G, Tian Y C, Huang Q. Lab on a Chip, 2017, 17:1306.
[68] Lin X Z, Terepka A D, Yang H. Nano Lett., 2004, 4:2227.
[69] Wagner J, Kirner T, Mayer G, Albert J, Köhler J M. Chem. Eng. J., 2004, 101:251.
[70] Lohse S E, Eller J R, Sivapalan S T, Plews M R, Murphy C J. ACS Nano, 2013, 7:4135.
[71] Uson L, Sebastian V, Arruebo M, Santamaria J. Chem. Eng. J., 2016, 285:286.
[72] Lu M Q, Yang S, Ho Y P, Grigsby C L, Leong K, Huang T J. ACS Nano, 2014, 8:10026.
[73] Knauer A, Thete A, Li S, Romanus H, Csáki A, Fritzsche W, Köhler J M. Chem. Eng. J., 2011, 166:1164.
[74] Sebastián V, Zaborenko N, Gu L, Jensen K F. Cryst. Growth Des., 2017, 17:2700.
[75] Tao S, Yang M, Chen H H, Ren M Y, Chen G W. J. Colloid Interface Sci., 2017, 486:16.
[76] Kang H W, Leem J, Yoon S Y, Sung H J. Nanoscale, 2014, 6:2840.
[77] Dai J, Yang X Y, Hamon M, Kong L Z. Chem. Eng. J., 2015, 280:385.
[78] De Solorzano I O, Prieto M, Mendoza G, Alejo T, Irusta S, Sebastian V, Arruebo M. ACS Appl. Mater. Interfaces, 2016, 8:21545.
[79] 李宏福(Li H F), 张博明(Zhang B M), 郭兴林(Guo X L). 化学进展(Progress in Chemistry), 2011, 23:1196.
[80] Oh H J, Son J H, Hwang S J, Kim J, Hyun D C. Colloid Polym. Sci., 2017, 295:1475.
[81] Paulsen K S, Chung A J. Lab on a Chip, 2016, 16:2987.
[82] Visaveliya N, Kohler J M. ACS Appl. Mater. Interfaces, 2014, 6:11254.
[83] Dendukuri D, Pregibon D C, Collins J, Hatton T A, Doyle P S. Nat. Mater., 2006, 5:365.
[84] Chen P W, Erb R M, Studart A R. Langmuir, 2012, 28:144.
[85] Alrifaiy A, Lindahl O A, Ramser K. Polymers, 2012, 4:1349.
[86] Hasani-Sadrabadi M M, Taranejoo S, Dashtimoghadam E, Bahlakeh G, Majedi F S, van Dersarl J J, Janmaleki M, Sharifi F, Bertsch A, Hourigan K, Tayebi L, Renaud P, Jacob K I. Adv. Mater., 2016, 28:4134.
[87] Ebert S, Koo C K, Weiss J, McClements D J. Food Res. Int., 2017, 92:48.
[88] Ekanem E E, Zhang Z, Vladisavljevic G T. J. Colloid Interface Sci., 2017, 498:387.
[89] Song Y J, Ji S X, Song Y J, Li R S, Ding J, Shen X S, Wang R M, Xu R W, Gu X Y. J. Phys. Chem. C, 2013, 117:17274.
[90] Ji X H, Cheng W, Guo F, Liu W, Guo S S, He Z K, Zhao X Z. Lab on a Chip, 2011, 11:2561.
[91] Chen Y, Dong P F, Xu J H, Luo G S. Langmuir, 2014, 30:8538.
[92] El Kadib A. ChemSusChem, 2015, 8:217.
[93] Roosen J, Van Roosendael S, Borra C R, Van Gerven T, Mullens S, Binnemans K. Green Chem., 2016, 18:2005.
[94] Cui Q, Zhao H, Luo G S, Xu J H. Indus. Eng. Chemi. Res., 2016, 56:143.
[95] Nisisako T. Curr. Opin. Colloid Interface Sci., 2016, 25:1.
[96] Ekanem E E, Zhang Z, Vladisavljevic G T. Langmuir, 2017, 33:8476.
[97] Li W X, Dong H, Tang G N, Ma T, Cao X D. RSC Adv., 2015, 5:23181.
[98] Yang S K, Guo F, Kiraly B, Mao X L, Lu M Q, Leong K W, Huang T J. Lab on a Chip, 2012, 12:2097.
[99] Shang L R, Shangguan F Q, Cheng Y, Lu J, Xie Z Y, Zhao Y J, Gu Z Z. Nanoscale, 2013, 5:9553.
[100] 翟文中(Zhai W Z), 何玉凤(He Y F), 王斌(Wang B), 熊玉兵(Xiong Y B), 宋鹏飞(Song P F), 王荣民(Wang R M). 化学进展(Progress in Chemistry), 2017, 29:127.
[101] Min N G, Ku M, Yang J, Kim S H. Chem. Mater., 2016, 28:1430.
[102] Hu Y D, Wang S B, Abbaspourrad A, Ardekani A M. Langmuir, 2015, 31:1885.
[103] Xu K, Ge X H, Huang J P, Dang Z X, Xu J H, Luo G S. RSC Adv., 2015, 5:46981.
[104] Yang Y T, Wei J, Li X, Wu L J, Chang Z Q, Serra C A. Adv. Powder Technol., 2015, 26:156.
[105] Khan I U, Serra C A, Anton N, Li X, Akasov R, Messaddeq N, Kraus I, Vandamme T F. Intern. J. Pharma., 2014, 473:239.
[106] Nisisako T, Torii T, Takahashi T, Takizawa Y. Adv. Mater., 2006, 18:1152.
[107] Nisisako T, Torii T, Higuchi T. Chem. Engin. J., 2004, 101:23.
[108] Maeda K, Onoe H, Takinoue M, Takeuchi S. Adv. Mater., 2012, 24:1340.
[109] Marquis M, Davy J, Cathala B, Fang A, Renard D. Carbohydr. Polym., 2015, 116:189.
[110] Lan J W, Chen J Y, Li N X, Ji X J, Yu M X, He Z K. Talanta, 2016, 151:126.
[111] Seiffert S, Romanowsky M B, Weitz D A. Langmuir, 2010, 26:14842.
[112] Zhao Y J, Shum H C, Chen H S, Adams L L, Gu Z Z, Weitz D A. J. Am. Chem. Soc., 2011, 133:8790.
[113] Shah R K, Kim J W, Weitz D A. Adv. Mater., 2009, 21:1949.
[114] Lone S, Kim S H, Nam S W, Park S, Joo J, Cheong I W. Chem. Commun., 2011, 47:2634.
[115] Yamagami T, Kitayama Y, Okubo M. Langmuir, 2014, 30:7823.
[116] Min N G, Kim B, Lee T Y, Kim D, Lee D C, Kim S H. Langmuir, 2015, 31:937.
[117] 杨小超(Yang X C), 莫志宏(Mo Z H). 化学进展(Progress in Chemistry), 2010, 22:1735.
[118] Huang H S, Yu Y, Hu Y, He X M, Berk Usta O, Yarmush M L. Lab on a Chip, 2017, 17:1913.
[119] Kim B, Jeon T Y, Oh Y K, Kim S H. Langmuir, 2015, 31:6027.
[120] Polenz I, Weitz D A, Baret J C. Langmuir, 2015, 31:1127.
[121] Lee T Y, Choi T M, Shim T S, Frijns R A, Kim S H. Lab on a Chip, 2016, 16:3415.
[122] Kim S H, Park J G, Choi T M, Manoharan V N, Weitz D A. Nat. Commun., 2014, 5:3068.
[123] Lee S S, Kim B, Kim S K, Won J C, Kim Y H, Kim S H. Adv. Mater., 2015, 27:627.
[124] Brugarolas T, Gianola D S, Zhang L, Campbell G M, Bassani J L, Feng G, Lee D H. ACS Appl. Mater. Interfaces, 2014, 6:11558.
[125] Tu F Q, Lee D Y. Langmuir, 2012, 28:9944.
[126] Lee D Y, Weitz D A. Adv. Mater., 2008, 20:3498.
[127] Sun B J, Shum H C, Holtze C, Weitz D A. ACS Applied Materials & Interfaces, 2010, 2:3411.
[128] Windbergs M, Zhao Y, Heyman J, Weitz D A. J. Am. Chem. Soc., 2013, 135:7933.
[129] Perro A, Nicolet C, Angly J, Lecommandoux S, Le Meins J F, Colin A. Langmuir, 2011, 27:9034.
[130] Shum H C, Zhao Y J, Kim S H, Weitz D A. Angew. Chem. Int. Ed. Engl., 2011, 50:1648.
[131] Kim S H, Nam J, Kim J W, Kim D H, Han S H, Weitz D A. Lab on a Chip, 2013, 13:1351.
[1] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[2] 李晓光, 庞祥龙. 液体橡皮泥:属性特征、制备策略及应用探索[J]. 化学进展, 2022, 34(8): 1760-1771.
[3] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[4] 杨冬, 高可奕, 杨百勤, 雷蕾, 王丽霞, 薛朝华. 微流控合成体系的装置分类及其用于纳米粒子的制备[J]. 化学进展, 2021, 33(3): 368-379.
[5] 薛銮栾, 李会增, 李安, 赵志鹏, 宋延林. 基于各向异性表面的液滴驱动[J]. 化学进展, 2021, 33(1): 78-86.
[6] 李慧调, 潘建章, 方群. 数字PCR技术的发展及应用[J]. 化学进展, 2020, 32(5): 581-593.
[7] 张咚咚, 刘敬民, 刘瑶瑶, 党梦, 方国臻, 王硕. 纳米粒子在药物传递中的应用[J]. 化学进展, 2018, 30(12): 1908-1919.
[8] 喻志超, 汤淳, 姚丽, 高庆, 徐祖顺, 杨婷婷. 聚合物基模板制备中空介孔材料[J]. 化学进展, 2018, 30(12): 1899-1907.
[9] 毕洪梅, 韩晓军. 磁应答型药物递送载体的设计与构建[J]. 化学进展, 2018, 30(12): 1920-1929.
[10] 汪伟, 谢锐, 巨晓洁, 刘壮, 褚良银*. 液滴模板法制备颗粒材料过程中介尺度结构调控的研究进展[J]. 化学进展, 2018, 30(1): 44-50.
[11] 李平, 董阿力德尔图, 孙梓嘉, 高歌. N-卤胺类高分子与纳米抗菌材料的制备及应用[J]. 化学进展, 2017, 29(2/3): 318-328.
[12] 陈璐扬, 赵瑾, 龙丽霞, 侯信, 原续波*. 肿瘤免疫治疗中的生物医用载体[J]. 化学进展, 2017, 29(10): 1195-1205.
[13] 覃成鹏, 杨宁. 多相分散体系中气泡/液滴聚并和破碎的群平衡模拟[J]. 化学进展, 2016, 28(8): 1207-1223.
[14] 杜鑫, 赵彩霞, 黄洪伟, 温永强, 张学记. 树枝状多孔二氧化硅纳米粒子的制备及其在先进载体中的应用[J]. 化学进展, 2016, 28(8): 1131-1147.
[15] 郝锐, 张丛筠, 卢亚, 张东杰, 郝耀武, 刘亚青. 氧化石墨烯/金银纳米粒子复合材料的制备及其SERS效应研究[J]. 化学进展, 2016, 28(8): 1186-1195.