English
新闻公告
More
化学进展 2018, Vol. 30 Issue (12): 1899-1907 DOI: 10.7536/PC180409 前一篇   后一篇

• 综述 •

聚合物基模板制备中空介孔材料

喻志超1, 汤淳1, 姚丽1, 高庆1, 徐祖顺1, 杨婷婷1,2*   

  1. 1. 湖北大学材料科学与工程学院 湖北省高分子材料重点实验室 武汉 430062;
    2. 中国地质大学纳米矿物材料及应用教育部工程研究中心 武汉 430074
  • 收稿日期:2018-04-08 修回日期:2018-05-28 出版日期:2018-12-15 发布日期:2018-09-26
  • 通讯作者: 杨婷婷 E-mail:tingting.yang@hubu.edu.cn
  • 基金资助:
    国家自然科学基金青年科学基金项目(No.51503059)和"纳米矿物材料及应用教育部工程研究中心"2016年度开放研究课题(No.NGM2016KF012)资助

Preparation of Hollow Mesoporous Materials by Polymer-Based Templates

Zhichao Yu1, Chun Tang1, Li Yao1, Qing Gao1, Zushun Xu1, Tingting Yang1,2*   

  1. 1. Hubei Key Laboratory of Polymer Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062;
    2. Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
  • Received:2018-04-08 Revised:2018-05-28 Online:2018-12-15 Published:2018-09-26
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(No.51503059) and the Open Research Project of Engineering Research Center of Nano-Geo Materials of Ministry of Education(No.NGM2016KF012).
中空介孔材料,尤其是硅基和碳基中空介孔材料,由于其孔道结构丰富、孔径可调、高比表面积、可容纳客体分子、良好的热稳定性和化学稳定性等特点已被广泛应用于催化、能量储存等众多领域。模板法是目前为止制备中空介孔结构最有效的方法之一,其最大特点是可以通过对模板的调控来实现对中空介孔结构的控制。聚合物基模板种类繁多,主要包括嵌段共聚物、聚合物乳胶粒、天然/合成生物大分子及复杂结构高分子等;与传统的表面活性剂/无机氧化物模板相比,其自组装形态更加丰富,结构更易进行功能化修饰。同时,以聚合物为模板的合成反应条件更加温和可控,更有利于合成形态各异、功能丰富的中空介孔材料。本文综述了近年来不同聚合物基模板合成中空介孔材料的研究进展,并着重介绍了贵金属粒子负载的中空介孔材料在催化载体领域的应用;同时,指出了当前阻碍中空介孔材料发展的问题,并对其在催化领域的应用前景进行了展望。
Hollow mesoporous materials (HMMs), especially the silica-based and carbon-based HMMs, are of great importance on account of their tunable pore sizes and structures, chemical stability, facile surface functionalization, high guest molecules uploading and broad applications in the field of catalysis, biology and energy storage. Template method is one of the most effective methods to prepare HMMs. Controlling HMMs can be realized by modulating the templates. Polymer-based templates, including micelles, self-assemblies of block polymers, polymer latex particles, natural/synthetic macromolecules and sophisticate-structured macromolecules (dentrimer and brushes), are successfully applied in preparing HMMs in desired forms. Recent progress in the synthesis of hollow mesoporous materials with different polymer-based templates are reviewed. Compared with the conventional surfactant/inorganic oxide templates, polymer-based templates are easy to undergo surface modification and possess ampler self-assembly morphologies such as spheres, vesicles and rods under more gentle and controllable synthetic conditions. Especially the unique hollow cavity of HMMs is more efficient to capture the noble metal nanoparticles as cores. Applications of noble-metal-uploading hollow mesoporous materials as catalytic carriers are discussed mainly in three aspects including chemical catalysis, electrocatalysis and photoelectric catalysis. At the same time, the problems hindering the development of HMMs are pointed out, and the application prospect of HMMs in catalysis is prospected.
Contents
1 Introduction
2 Polymer-based templates
2.1 Self-assemblies of block copolymers
2.2 Emulsion droplet and polymer latex particles
2.3 Natural/synthetic biological macromolecules
2.4 Sophisticate-structured polymers
3 Hollow mesoporous materials as catalytic carriers
4 Conclusion

中图分类号: 

()
[1] Fang X, Zhao X, Fang W, Chen C, Zheng N. Nanoscale, 2013, 5:2205.
[2] Zhang Y, Yue Q, Yu L, Yang X, Hou X, Zhao D, Cheng X, Deng Y. Adv. Mater., 2018, 26:1800345.
[3] Wang J G, Li F, Zhou H J, Sun P C, Ding D T, Chen T H. Chem. Mater., 2009, 21:612.
[4] Wang J, Xiao Q, Zhou H, Sun P, Yuan Z, Li B, Ding D, Shi A C, Chen T. Adv. Mater., 2006, 18:3284.
[5] Yu M, Wang H, Zhou X, Yuan P, Yu C. J. Am. Chem. Soc., 2007, 129:14576.
[6] Chen H, He J. Chem. Commun., 2008, 37:4422.
[7] Jia B, Qin M, Zhang Z, Zhang Z, Chu A, Zhang L, Liu Y, Lu H F, Qu X H. Carbon, 2013, 62:472.
[8] Shi J, Yao Q, Li X, Zhou G, Fu S. Am. Mineral., 2012, 97:1381.
[9] Du J, Chen Y, Zhang Y, C. Han C, Fischer K, Schmidt M.J. Am. Chem. Soc., 2003, 125:14710.
[10] Niu D, Ma Z, Li Y, Shi J. J. Am. Chem. Soc., 2010, 132:15144
[11] Yang Z C, Zhang Y, Kong J H, Wong S Y, Li X, Wang J. Chem. Mater., 2013, 25:704.
[12] Lee H, Park J, Choi S, Son J, Oh M. Small, 2013, 4:561.
[13] Nonoyama T, Kinoshita T, Higuchi M, Nagata K, Tanaka M, Sato K, Kato K. J. Am. Chem. Soc., 2012, 134:8841.
[14] Yao S, Jin B, Liu B, Shao C, Zhao R, Wang X, Tang R. Adv. Mater., 2017, 29:1605903.
[15] Liu D, Sasidharan M, Nakashima K. J. Colloid. Interface Sci., 2011, 358:354.
[16] Li Y, Bastakoti B P, Imura M, Tang J, Aldalbahi A, Torad N L, Yamauchi Y. Chem. Eur. J., 2015, 21:6375.
[17] Li N, Niu D, Jiang Y, Xu C, Pan S, He J, Chen J, Zhang L,Li Y. Chem. Mater., 2017, 29:10377.
[18] Yoon H, Hong J, Park C, Dong W, Sang E.Mater. Lett.,2009, 63:2047.
[19] Teng Z, Han Y, J Li, F Yan, Yang W. Micropor. Mesopor. Mat., 2010, 127:67.
[20] Ma X, Zhang J, Dang M, Wang J, Tu Z, Yuwen L, Chen G, Su X, Teng Z.J. Colloid Interface Sci., 2016, 475:66.
[21] Yang S M, Sokolov I, Coombs N, Kresge C T, Ozin G A. Adv. Mater., 1999, 11:1427.
[22] Chen H, He J, Tang H, Yan C. Chem. Mater., 2008, 20:5894.
[23] Chen H, Hu T, Zhang X, Huo K, Chu P K, He J. Langmuir, 2010, 26:13556.
[24] Du X, He J. Chem. Eur. J., 2011, 17:8165.
[25] Zhang H, Ye F, Xu H, Liu L, Guo H. Mater. Lett., 2010, 64:1473.
[26] Prieto G, Tüysüz H, Duyckaerts N, Knossalla J, Wang G H, Schüth F. Chem. Rev., 2016, 116:14056.
[27] Wang G H, Hilgert J, Richter F H, Wang F, Bongard H J, Spliethoff B, Weidenthaler C, Schüth F. Nature Mater., 2014, 13:293.
[28] Sakai T, Alexandridis P. Langmuir, 2004, 20:8426.
[29] Sakai T, Alexandridis P. J. Phys. Chem. B, 2005, 109:7766.
[30] Wang C, Daimon H, Lee Y, Lee Y, Kim J, Sun S. J. Am. Chem. Soc., 2007, 129:6974.
[31] Yin A X, Min X Q, Zhang Y W, Yan C H. J. Am. Chem. Soc., 2011,133:3816.
[32] Yin A X, Min X Q, Zhu W, Wu H S, Zhang Y W, Yan C H. Chem. Commun., 2012, 48:543.
[33] Mazinani B, Beitollahi A, Masrom A, Samiee L, Ahmadi Z. Ceram. Int., 2017, 43:11786.
[34] Li Y, Chen J, Xu Q, He L, Chen Z. J. Phys. Chem. C, 2009, 113:10085.
[35] Zhou F, Li S, Vo C, Yuan J, Chai S, Gao Q, Armes S, Lu C, Cheng S.Langmuir, 2007, 23:9737.
[36] Pi M, Yang T, Yuan J, Fujii S, Kakigi Y, Nakamura Y, Cheng S. Colloids Surfaces B, 2010, 78:193.
[37] Chai S, Zhang J, Yang T, Yuan J, Cheng S. Colloid Surface A, 2010, 356:32.
[38] Zhou H, Luo J, Gao Q, Yang T. J. Appl. Polym. Sci., 2016, 133:44200.
[39] Shimizu K, Cha J, Stucky G D, Morse D E. P. Natl. Acad. Sci. U.S.A., 1998, 95:6234.
[40] Cha J N, Shimizu K, Zhou Y, Christiansen S C, Chmelka B F, Stucky G D, Morse D E. P. Natl. Acad. Sci. U.S.A., 1999, 96:361.
[41] Kroger N, Lorenz S, Brunner E, Sumper M. Science, 1999, 286:1129.
[42] Kroger N, Lorenz S, Brunner E, Sumper M. Science. 2002, 298:584.
[43] Shiomi T, Tsunoda T, Kawai A, Chiku H, Mizukami F, Sakaguchi K. Chem. Commun., 2005, 42:5325.
[44] Shiomi T, Tsunoda T, Kawai A, Mizukami F, Sakaguchi K. Chem. Mater., 2007, 19:4486.
[45] Wibowo D, Zhao C X, Middelberg A P. Langmuir, 2015, 31:1999.
[46] Shi J F,Zhang S H,Wang X L,Yang C,Jiang Z Y. J. Mater. Chem. B, 2014, 2:4289.
[47] Galarneau A, Sartori F, Cangiotti M, Mineva T, Renzo D F,Ottaviani M F. J. Phys. Chem. B, 2010, 114:2140.
[48] Wibowo D, Zhao C, Middelberg A. Chem. Commun., 2014, 50:11325.
[49] Cha J N, Stucky G D, Morse D E, Deming T J. Nature, 2000, 403:289.
[50] Wong M S, Cha J N, Choi K S, Deming T J, Stucky G D. Nano Lett., 2002, 2:583.
[51] Jan J, ChuangT, Chen P, Teng H. Langmuir, 2011, 27:2834.
[52] Ren H, Zhang Y, Su J, Lin P, Wang B, Fang B, Wang S. J. Biotechnol., 2017, 241:33.
[53] Jiang Y, Yang D, Zhang L, Li L, Sun Q, Zhang Y, Li J, Jiang Z. Dalton Trans., 2008, 21(31):4165.
[54] Knecht M R. Wright D W. Langmuir, 2004, 20:4728.
[55] Demadis K D, Neofotistou E. Chem. Mater., 2007, 19:581.
[56] Müllner M, Lunkenbein T, Breu J, Caruso F, Müller A H E. Chem. Mater., 2012, 24:1802.
[57] Al-Marri M J, Kuti Y O, Khraisheh M, Kumar A, Khader M M. Chem. Eng. Tenhnol., 2017, 40:1802.
[58] Stein, Andreas. Adv. Mater., 2003, 15:763.
[59] Taguchi A, Schüth F. Micropor. Mesopor. Mat., 2005, 77:1.
[60] Haruta M, Daté M. Appl. Catal. A-Gen., 2001, 222:427.
[61] Wu S H, Tseng C T, Lin Y S, Lin C H, Hung Y, Mou C Y. J. Mater. Chem., 2011, 21:789.
[62] Wu X, Tan L, Chen D, Meng X, Tang F. Chem. Commun., 2014, 50:539.
[63] Yang Y, Liu X, Li X, Zhao J, Bai S, Liu J, Yang Q. Angew. Chem., Int. Ed., 2012, 51:9164.
[64] He X, Tan L, Chen D, Wu X, Ren X, Zhang Y, Meng X, Tang F. Chem. Commun., 2013, 49:4643.
[65] Xing R, Zhou T, Zhou Y, Ma R, Liu Q, Luo J, Wang J. Nano-Micro Lett., 2018, 10:3.
[66] Zhou T, Zhou Y, Ma R, Liu Q, Zhu Y, Wang J. J. Mater. Chem. A, 2017, 5:12243.
[67] Zhou L, Yang C, Wen J, Fu P, Sun J, Wang H,Yuan Y. J. Mater. Chem. A, 2017, 36:19343.
[68] Pourdayhimi P, Pei W K, Salleh M M, Nur H, Lee S L. Aust. J. Chem., 2016, 69:790.
[69] Fujiwara K, Kuwahara Y, Sumida Y, Yamashita H. Langmuir, 2017, 33:288.
[70] Fujiwara K, Kuwahara Y, Sumida Y, Yamashita H. J. Mater. Chem. A, 2017, 48:25431.
[71] Rostamnia S, Kholdi S. Adv. Powder. Technol., 2018, 29:1167.
[72] Hong Y, Choi I, Seo W. Sci. Rep., 2018, 8:7469.
[1] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[2] 任芳芳, 蒋丰兴, 周卫强, 杜玉扣*, 徐景坤*. 导电聚合物/贵金属复合材料应用于C1小分子电催化氧化[J]. 化学进展, 2012, (9): 1818-1836.
[3] 陶凯, 王继乾*, 夏道宏, 徐海, 吕建仁, 山红红. 多肽在贵金属纳米粒子制备中的应用[J]. 化学进展, 2012, 24(07): 1294-1308.
[4] 夏文健, 孟令杰, 刘丽, 路庆华. 贵金属纳米粒子修饰碳纳米管的研究[J]. 化学进展, 2010, 22(12): 2298-2308.
[5] 肖桂娜 蔡继业. 基于局域表面等离子体共振效应的光学生物传感器*[J]. 化学进展, 2010, 22(01): 194-200.
阅读次数
全文


摘要

聚合物基模板制备中空介孔材料