English
新闻公告
More
化学进展 2016, Vol. 28 Issue (8): 1131-1147 DOI: 10.7536/PC160209 前一篇   后一篇

• 综述与评论 •

树枝状多孔二氧化硅纳米粒子的制备及其在先进载体中的应用

杜鑫1*, 赵彩霞1, 黄洪伟2, 温永强1, 张学记1   

  1. 1. 北京科技大学化学与生物工程学院 生物工程与传感技术研究中心 北京 100083;
    2. 中国地质大学 材料科学与工程学院 北京 100083
  • 收稿日期:2016-02-01 修回日期:2016-06-01 出版日期:2016-08-15 发布日期:2016-07-12
  • 通讯作者: 杜鑫 E-mail:duxin@ustb.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21501009)、北京科技大学高水平拔尖人才引进计划(No.06500017)和中央高校基本科研业务费专项资金(No.FRF-TP-15-019A1)资助

Synthesis of Dendrimer-Like Porous Silica Nanoparticles and Their Applications in Advanced Carrier

Du Xin1*, Zhao Caixia1, Huang Hongwei2, Wen Yongqiang1, Zhang Xueji1   

  1. 1. Research Center for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China;
    2. School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
  • Received:2016-02-01 Revised:2016-06-01 Online:2016-08-15 Published:2016-07-12
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21501009), the High-Level Talent Introduction Plan of University of Science & Technology Beijing ( No. 06500017) and the Fundamental Research Funds for the Central Universities (No. FRF-TP-15-019A1)
树枝状多孔二氧化硅纳米粒子具有中心辐射状孔道结构且孔道尺寸从粒子内部到粒子表面逐渐增加,是一种具有新颖结构的多孔材料。和传统的具有二维六方有序孔道结构的介孔二氧化硅粒子相比,这种粒子具有三维开放性的树枝状骨架结构,因而具有独特的结构优势,即高的孔渗透性和高的粒子内表面的可接触性,从而有利于物质(分子或纳米粒子)沿着中心辐射状的孔道进行输送,在树枝状粒子的内部负载或者与内部的活性位点发生反应。因此,这种粒子是一种很有前景的载体平台,可以用来构筑新型的吸附剂、纳米催化剂和基因药物的递送系统等。本综述首先介绍了一系列的合成方法和对树枝状骨架结构的调控策略,探讨了树枝状多孔结构对物理化学性能的影响,描述了其在催化、纳米生物医学、环境能源等领域的应用性能,并对树枝状多孔二氧化硅粒子的合成方向和应用前景进行了展望。
Dendrimer-like porous silica nanoparticles, which have center-radial pore structures with gradually increasing pore sizes from particle interior to particle surface, are a kind of new porous material. Compared with conventional mesoporous silica nanoparticles (MSNs) with uniform hexagonal ordered mesopores, dendrimer-like nanoparticles have remarkable structure advantages due to their unique open three-dimensional dendritic superstructures, such as high pore permeability and high accessibility to internal surface, thus being in favor of mass (molecules and even nanoparticles) transfer process along center-radial pore channels, loading in the interior of dendritic nanoparticles or reacting with active sites in the particles. Therefore, they are very promising platforms to construct advanced adsorbents, nanocatalysts and drugs and gene nanocarriers. In this review, we first introduce a series of synthesis methods and the intrinsic mechanism about how to regulate the dendritic structure, then analyze their unique structural characteristics and the corresponding physicochemical properties, subsequently present a few examples of interesting applications mainly in catalysis, biomedicine, environment and energy, and other important fields, finally conclude with an outlook on the prospects and challenges in terms of their controlled synthesis and potential applications.

Contents
1 Introduction
2 Structural characteristics and properties
3 Synthesis strategies
3.1 Oil-water biphase stratification method
3.2 Special microemulsion systems
3.3 Dynamic ethyl ether emulsion systems
3.4 Dynamic polystyrene template
3.5 Soft template caused by strong counterion
3.6 Other approaches
4 Applications
4.1 Catalysis
4.2 Biomedical and biotechnological applications
4.3 Other applications

中图分类号: 

()
[1] Stöber W,Fink A,Bohn E.J.Colloid Interface Sci.,1968,26:62.
[2] Kresge C T,Leonowicz M E,Roth W J,Vartuli J C,Beck J S.Nature,1992,359:710.
[3] Zhao D Y,Feng J L,Huo Q S,Melosh N,Fredrickson G H,Chmelka B F,Stucky G D,Science,1998,279:548.
[4] Vallet-Regí M,Balas F,Arcos D.Angew.Chem.Int.Ed.,2007,46:7548.
[5] Slowing I I,Trewyn B G,Giri S,Lin V S Y.Adv.Funct.Mater.,2007,17:1225.
[6] Trewyn B G,Slowing I I,Giri S,Chen H T,Lin V S Y.Acc.Chem.Res.,2007,40:846.
[7] Trewyn B G,Giri S,Slowing I I,Lin V S Y.Chem.Commun.,2007,32:36.
[8] Wang S.Microporous Mesoporous Mater.,2009,117:1.
[9] Hom C,Lu J,Tamanoi F.J.Mater.Chem.,2009,19:6308.
[10] Zhao Y,Vivero-Escoto J L,Slowing I I,Trewyn B G,Lin V S Y.Expert Opin.Drug Deliv.,2010,7:1013.
[11] Che S,Liu Z,Ohsuna T,Sakamoto K,Terasaki O,Tatsumi T,Nature,2004,429:281.
[12] Zheng Y,Lin L H,Ye X J,Guo F S,Wang X C,Angew.Chem.Int.Ed.,2014,53:11926.
[13] Shopsowitz K E,Hao Q,Hamad W Y,Maclachlan M J,Nature,2010,468:422.
[14] Slowing I I,Vivero-Escoto J L,Wu C W,Lin V S Y.Adv.Drug Delivery Rev.,2008,60:1278.
[15] Vivero-Escoto J L,Slowing I I,Trewyn B G,Lin V S Y.Small,2010,6:1952.
[16] Du X,Li X,Xiong L,Zhang X,Kleitz F,Qiao S Z,Biomaterials,2016,91:90.
[17] Tang F,Li L,Chen D.Adv.Mater.,2012,24:1504.
[18] Ambrogio M W,Thomas C R,Zhao Y L,Zink J I,Stoddart J F.Acc.Chem.Res.,2011,44:903.
[19] Tarn D,Ashley C E,Xue M,Carnes E C,Zink J I,Brinker C J.Acc.Chem.Res.,2013,46:792.
[20] Li Z,Barnes J C,Bosoy A,Stoddart J F,Zink J I.Chem.Soc.Rev.,2012,41:2590.
[21] Zhang Y,Hsu B Y W,Ren C,Li X,Wang J.Chem.Soc.Rev.,2015,44:315.
[22] He Q,Shi J.J.Mater.Chem.,2011,21:5845.
[23] He Q,Shi J.Adv.Mater.,2014,26:391.
[24] Yang P,Gai S,Lin J.Chem.Soc.Rev.,2012,41:3679.
[25] Wang K,He X,Yang X,Shi H.Acc.Chem.Res.,2013,46:1367.
[26] Coll C,Bernardos A,Martínez-Máñez R,Sancenón F.Acc.Chem.Res.,2013,46:339.
[27] Mamaeva V,Sahlgren C,Lindén M.Adv.Drug Delivery Rev.,2013,65:689.
[28] Vivero-Escoto J L,Huxford-Phillips R C,Lin W.Chem.Soc.Rev.,2012,41:2673.
[29] Ciriminna R,Fidalgo A,Pandarus V,Béland F,Ilharco L M,Pagliaro M.Chem.Rev.,2013,113:6592.
[30] Rosenholm J M,Sahlgren C,Lindén M.Nanoscale,2010,2:1870.
[31] Lee J E,Lee N,Kim T,Kim J,Hyeon T.Acc.Chem.Res.,2011,44:893.
[32] Lin Y S,Hurley K R,Haynes C L.J.Phys.Chem.Lett.,2012,3:364.
[33] Popat A,Hartono S B,Stahr F,Liu J,Qiao S Z,Lu G Q.Nanoscale,2011,3:2801.
[34] Cotí K K,Belowich M E,Liong M,Ambrogio M W,Lau Y A,Khatib H A,Zink J I,Khashab N M,Stoddart J F.Nanoscale,2009,1:16.
[35] Rosenholm J M,Sahlgren C,Lindén M.Nanoscale,2010,2:1870.
[36] Argyo C,Weiss V,Bräuchle C,Bein T.Chem.Mater.,2014,26:435.
[37] Rosenholm J M,Mamaeva V,Sahlgren C,Lindén M.Nanomedicine,2012,7:111.
[38] Du X,Qiao S Z.Small,2015,11:32.
[39] Du X,He J.Nanoscale,2011,3:3984.
[40] Mintzer M A,Grinstaff M W.Chem.Soc.Rev.,2011,40:173.
[41] Medina S H,El-Sayed M E.Chem.Rev.,2009,109:3141.
[42] Khandare J,Calderón M,Dagia N M,Haag R.Chem.Soc.Rev.,2012,41:2824.
[43] Wang A Z,Langer R,Farokhzad O C.Annu.Rev.Med.,2012,63:185.
[44] Launey M E,Ritchie R O.Adv.Mater.,2009,21:2103.
[45] Ritchie R O,Nat.Mater.,2011,10:817.
[46] Andrievski R A,Glezer A M.Phys.Usp.,2009,52:315.
[47] Lee J,Singer J P,Thomas E L.Adv.Mater.,2012,24:4782.
[48] Na H K,Kim M H,Park K,Ryoo S R,Lee K E,Jeon H,Ryoo R,Hyeon C,Min D H.Small,2012,8:1752.
[49] Chen Y,Chu C,Zhou Y,Ru Y,Chen H,Chen F,He Q,Zhang Y,Zhang L,Shi J.Small,2011,7:2935.
[50] Chen L,Zhu G,Zhang D,Zhao H,Guo M,Shi W,Qiu S.J.Mater.Chem.,2009,19:2013.
[51] Hartono S B,Gu W,Kleitz F,Liu J,He L,Middelberg A P J,Yu C,Lu G Q,Qiao S Z.ACS Nano,2012,6:2104.
[52] Polshettiwar V,Cha D,Zhang X,Basset J M.Angew.Chem.Int.Ed.,2010,49:9652.
[53] Wang J,Xiao Q,Zhou H,Sun P,Yuan Z,Li B,Ding D,Shi A,Chen T.Adv.Mater.,2006,18:3284.
[54] Lin H P,Cheng Y R,Mou C Y.Chem.Mater.,1998,10:3772.
[55] Oliver S,Kuperman A,Coombs N,Lough A,Ozin G A.Nature,1995,378:47.
[56] Chen H,Hu T,Zhang X,Huo K,Chu P K,He J.Langmuir,2010,26:13556.
[57] Shen D,Yang J,Li X,Zhou L,Zhang R,Li W,Chen L,Wang R,Zhang F,Zhao D.Nano Lett.,2014,14:923.
[58] Yue Q,Li J,Luo W,Zhang Y,Elzatahry A A,Wang X,Wang C,Li W,Cheng X,Alghamdi A,Abdullah A M,Deng Y,Zhao D.J.Am.Chem.Soc.,2015,137:13282.
[59] Yang J,Shen D,Wei Y,Li W,Zhang F,Kong B,Zhang S,Teng W,Fan J,Zhang W,Dou S,Zhao D.Nano Res.,2015,8:2503.
[60] Xu C,Yu M,Noonan O,Zhang J,Song H,Zhang H,Lei C,Niu Y,Huang X,Yang Y,Yu C.Small,2015,11:5949.
[61] Yang Y,Niu Y,Zhang J,Meka A K,Zhang H,Xu C,Lin C X C,Yu M,Yu C.Small,2015,11:2743.
[62] Yang Y,Bernardi S,Song H,Zhang J,Yu M,Reid J C,Strounina E,Searles D J,Yu C.Chem.Mater.,2016,28:704.
[63] Yang H,Liao S,Huang C,Du L,Chen P,Huang P,Fu Z,Li Y.Appl.Surf.Sci.,2014,314:7.
[64] Gai S,Yang P,Ma P,Wang L,Li C,Zhang M,Jun L.Dalton Trans.,2012,41:4511.
[65] Moon D,Lee J.Langmuir,2012,28:12341.
[66] Moon D S,Lee J K.Langmuir,2014,30:15574.
[67] Imalka M,Hong J,Alicia D S,Balkus K J.J.Porous Mater.,2015,22:1.
[68] Xie Y,Wang J,Wang M,Ge X.J.Hazard.Mater.,2015,297:66.
[69] Huang W,Yu X,Tang J,Zhu Y,Zhang Y,Li D.Microporous Mesoporous Mater.,2015,217:225.
[70] Choi Y,Yun Y S,Park H,Park D S,Yun D,Yi J.Chem.Commun.,2014,50:7652.
[71] Gai S,Yang P,Ma P,Wang D,Li C,Li X,Niu N,Lin J.J.Mater.Chem.,2011,21:16420.
[72] Yu K,Zhang X,Tong H,Yan X,Liu S.Mater.Lett.,2013,106:151.
[73] Atabaev T S,Lee J H,Lee J J,Han D W,Hwang Y H,Kim H K,Hong N H.Nanotechnology,2013,24:345603.
[74] Peng H,Xu L,Wu H,Zhang K,Wu P.Chem.Commun.,2013,49:2709.
[75] Rowley H H,Reed R W.J.Am.Chem.Soc.,1951,73:2960.
[76] Lin H,Cui K,Yao Y,Cai Q,Feng Q,Li H.Chem.Lett.,2005,34:918.
[77] Du X,He J.Langmuir,2010,26:10057.
[78] Du X,He J.Langmuir,2011,27:2972.
[79] Du X,Shi B Y,Liang J,Dai J,Bai S,Qiao S Z.Adv.Mater.,2013,25:5981.
[80] Du X,Li X,Huang H,He J,Zhang X.Nanoscale,2015,7:6173.
[81] Chen H,J,Tang H,Yan C.Chem.Mater.,2008,20:5894.
[82] Du X,Li X,He J.ACS Appl.Mater.Interface,2010,2:2365.
[83] Du X,He J.Nanoscale,2012,4:852.
[84] Du X,He J.J.Colloid Interface Sci.,2010,345:269.
[85] Dai L,Zhang Q,Li J,Shen X,Mu C,Cai K.ACS Appl.Mater.Interfaces,2015,7:7357.
[86] Zhang H,Li Z,Xu P,Wu R,Jiao Z.Chem.Commun.,2010,46:6783.
[87] Nandiyanto A B D,Kim S G,Iskandar F,Okuyama K.Microporous Mesoporous Mater.,2009,120:447.
[88] Zhang Y,Zhi Z,Jiang T,Zhang J,Wang Z,Wang S.J.Controlled Release,2010,145:257.
[89] Chen P J,Hu S H,Hung W,Chen S Y,Liu D M.J.Mater.Chem.,2012,22:9568.
[90] Chen P J,Hu S H,Fan C T,Li M L,Chen Y Y,Chen S Y,Liu D M,Chem.Commun.,2013,49:892.
[91] Chen P J,Kang Y D,Lin C H,Chen S Y,Hsieh C H,Chen Y Y,Chiang C W,Lee W,Hsu C Y,Liao L D,Fan C T,Li M L,Shyu W C.Adv.Mater.,2015,27:6488.
[92] Zhang K,Xu L,Jiang J,Calin N,Lam K,Zhang S,Wu H,Wu G,Albela B,Bonneviot L,Wu P.J.Am.Chem.Soc.,2013,135:2427.
[93] Yu Y J,Xing J L,Pang J L,Jiang S H,Lam K F,Yang T Q,Xue Q S,Zhang K,Wu P.ACS Appl.Mater.Interfaces,2014,6:22655.
[94] Xiong L,Du X,Shi B,Bi J,Freddy K,Qiao S Z.J.Mater.Chem.B,2015,3:1712.
[95] Wu M,Meng Q,Chen Y,Du Y,Zhang L,Li Y,Zhang L,Shi J.Adv.Mater.,2015,27:215.
[96] Sheng Y,Zeng H C.ACS Appl.Mater.Interfaces,2015,7:13578.
[97] Egger S M,Hurley K R,Datt Ashish,Swindlehurst G,Haynes C L.Chem.Mater.,2015,27:3193.
[98] Min Y,Yang K,Liang Z,Zhang L,Zhang Y.RSC Adv.,2015,5:26269.
[99] Zhang A,Gu L,Hou K,Dai C,Song C,Guo X.RSC Adv.,2015,5:58355.
[100] Kim J H,Yoon S B,Kim J Y,Chae Y B,Yu J S.Colloids Surf.A,2008,77:313.
[101] Yokoi T,Karouji T,Ohta S,Kondo J N,Tatsumi T.Chem.Mater.,2010,22:3900.
[102] Wang J,Xiao Q,Zhou H,Sun P,Li B,Ding D,Chen T.J.Phys.Chem.C,2007,111:16544.
[103] Yoo W.C,Stein A.Chem.Mater.,2011,23:1761.
[104] Paula A J,Montoro L A,Filho A G S,Alves O L.Chem.Commun.,2012,48:591.
[105] Perro A,Duguet E,Lambert O,Taveau J.C,Bourgeat-Lami E,Ravaine S.Angew.Chem.Int.Ed.,2009,48:361.
[106] Désert A,Chaduc I,Fouilloux S,Taveau J C,Lambert O,Lansalot M,Bourgeat-Lami E,Thill A,Spalla O,Ravaine S,Duguet E.Polym.Chem.,2012,3:1130.
[107] Désert A,Hubert C,Fu Z,Moulet L,Majimel J,Barboteau P,Thill A,Lansalot M,Bourgeat-Lami E,Duguet E,Ravaine S.Angew.Chem.Int.Ed.,2013,52:11068.
[108] Suteewong T,Sai H,Hovden R,Muller D,Bradbury M S,Gruner S M,Wiesner U.Science,2013,340:337.
[109] Croissant J,Cattoën X,Man M W C,Dieudonné P,Charnay C,Raehm L,Durand J O.Adv.Mater.,2015,27:145.
[110] Polshettiwar V,Thivolle-Cazat J,Taoufik M,Stoffelbach F,Norsic S,Basset J M.Angew.Chem.Int.Ed.,2011,50:2747.
[111] Fihri A,Cha D,Bouhrara M,Almana N,Polshettiwar V.Chem.Sus.Chem.,2012,5:85.
[112] Fihri A,Bouhrara M,Patil U,Cha D,Saih Y,Polshettiwar V.ACS Catal.,2012,2:1425.
[113] Shen D,Chen L,Yang J,Zhang R,Wei Y,Li X,Li W,Sun Z,Zhu H,Aboubakr A M,Al-Enizi A,Elzatahry A A,Zhang F,Zhao D.ACS Appl.Mater.Interfaces,2015,7:17450.
[114] Sun Z,Cui G,Li H,Tian Y,Yan S.Colloid Surf.A-Physicochem.Eng.Asp.,2016,489:142.
[115] Sun Z,Cui G,Li H,Tian Y,Yan S.Appl.Surf.Sci.,2016,360:252.
[116] Park D S,Yun D,Choi Y,Kim T Y,Oh S,Cho J H,Yi J.Chem.Eng.J.,2013,228:889.
[117] Chen Z,Zhao C,Ju E,Ji H,Ren J,Binks B P,Qu X.Adv.Mater.,2016,28:1682.
[118] Bouhrara M,Ranga C,Fihri A,Shaikh R R,Sarawade P,EmwasA H,Hedhili M N,Polshettiwar V.ACS Sustainable Chem.Eng.,2013,1:1192.
[119] Patil U,Fihri A,Emwas A H,Polshettiwar V.Chem.Sci.,2012,3:2224.
[120] Thankamony A S L,Lion C,Pourpoint F,Singh B,Linde A J P,Carnevale D,Bodenhausen G,Vezin H,Lafon O,Polshettiwar V.Angew.Chem.Int.Ed.,2015,54:2190.
[121] Vallet-Regí M,Rámila A,del Real R P,Pérez-Pariente J.Chem.Mater.,2001,13:308.
[122] Huang P,Zeng B,Mai Z,Deng J,Fang Y,Huang W,Zhang H,Yuan J,Wei Y,Zhou W.J.Mater.Chem.B,2016,4:46.
[123] Dai L,Zhang Q,Li J,Shen X,Mu C,Cai K.ACS Appl.Mater.Interfaces,2015,7:7357.
[124] Tao C,Zhu Y,Yu Y,Zhu M,Morta H,Hanagata N.Dalton Trans.,2014,43:5142.
[125] Du X,Shi B,Tang Y,Dai S,Qiao S Z.Biomaterials,2014,35:5580.
[126] Du X,Xiong L,Tang Y,Dai S,Kleitz F,Qiao S Z.Adv.Funct.Mater.,2014,24:7627.
[127] Misson M,Du X,Jin B,Zhang H.Enzyme Microb.Tech.,2016,84:68.
[128] Yang J,Chen W,Shen D,Wei Y,Ran X,Teng W,Fan J,Zhang,Zhao D.J.Mater.Chem.A,2014,2:11045.
[129] Zhang J,Zhang M,Yang C,Wang X.Adv.Mater.,2014,26:4121.
[130] Zheng D D,Pang C Y,Wang X C,Chem.Commun.,2015,51:17467.
[131] Zheng D D,Huang C J,Wang X C,Nanoscale,2015,7:465.
[132] Park D S,Yun D,Kim T Y,Baek J,Yun Y S,Yi J.Chem.Sus.Chem.,2013,6:2281.
[133] Feng L,Li S,Li Y,Li H,Zhang L,Zhai J,Song Y,Liu B,Jiang L,Zhu D.Adv.Mater.,2002,14:1857.
[134] Ming W,Wu D,Benthem R,With G.Nano Lett.,2005,5:2298.
[135] Du X,Liu X,Chen H,He J.J.Phys.Chem.C,2009,113:9063.
[136] Liu X,Du X,He J.Chem.Phys.Chem.,2008,9:305.
[137] Du X,He J.Chem.Eur.J.,2011,17:8165.
[138] Du X,Xing Y,Li X,Huang H,Geng Z,He J,Wen Y,Zhang X.RSC Adv.,2016,6:7864.
[139] Du X,He J.ACS Appl.Mater.Interface,2011,3:1269.
[140] Li X,Du X,He J.Langmuir,2010,26:13528.
[1] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[2] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[3] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[4] 陈晓峰, 王开元, 梁芳铭, 姜睿祺, 孙进. 外泌体递药系统及其在肿瘤治疗中的应用[J]. 化学进展, 2022, 34(4): 773-786.
[5] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[6] 杨林颜, 郭宇鹏, 李正甲, 岑洁, 姚楠, 李小年. 钴基费托合成催化剂的表界面性质调控[J]. 化学进展, 2022, 34(10): 2254-2266.
[7] 宋路杰, 吴友平, 邓建平. 手性药物的对映体选择性释放[J]. 化学进展, 2021, 33(9): 1550-1559.
[8] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
[9] 杨冬, 高可奕, 杨百勤, 雷蕾, 王丽霞, 薛朝华. 微流控合成体系的装置分类及其用于纳米粒子的制备[J]. 化学进展, 2021, 33(3): 368-379.
[10] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[11] 官启潇, 郭和泽, 窦红静. 细胞膜修饰的纳米载体与肿瘤免疫治疗[J]. 化学进展, 2021, 33(10): 1823-1840.
[12] 杨强强, 李川, 于淑娴, 范书华, 王月霞, 洪敏. 纳米载体在共负载siRNA及化疗药物对逆转肿瘤多药耐药性方面的应用[J]. 化学进展, 2021, 33(10): 1900-1916.
[13] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[14] 张芬铭, 田语舒, 郑绩, 陈堃, 冯岸超, 张立群. 基于PHPMA的生物医用功能高分子[J]. 化学进展, 2020, 32(2/3): 331-343.
[15] 黄倩文, 张晓文, 李密, 吴晓燕, 袁立永. 功能性纤维状二氧化硅纳米粒子的调控制备及在吸附分离中的应用[J]. 化学进展, 2020, 32(2/3): 230-238.