English
新闻公告
More
化学进展 2018, Vol. 30 Issue (11): 1734-1748 DOI: 10.7536/PC170832 前一篇   后一篇

• 综述 •

脂质体类药物载体的微流控制备

何天稀1, 梁琼麟2*, 王九1, 罗国安2   

  1. 1. 陆军勤务学院油料系 重庆 401331;
    2. 清华大学化学系 北京 100084
  • 收稿日期:2017-08-28 修回日期:2018-05-05 出版日期:2018-11-15 发布日期:2018-08-17
  • 通讯作者: 梁琼麟,e-mail:liangql@tsinghua.edu.cn E-mail:liangql@tsinghua.edu.cn
  • 基金资助:
    科技部国际合作项目(No.2011DFA31860)、国家科技重大专项课题资助项目(No.2013ZX09507005)、国家自然科学基金项目(No.21175080)、重庆市应用基础与前沿研究项目(No.cstc2014jcyjA10056)和陆军勤务学院学术创新项目(No.YZ15-436)资助

Microfluidic Fabrication of Liposomes as Drug Carriers

Tianxi He1, Qionglin Liang2*, Jiu Wang1, Guoan Luo2   

  1. 1. Department of Oil, Army Logistics University, Chongqing 401331, China;
    2. Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Received:2017-08-28 Revised:2018-05-05 Online:2018-11-15 Published:2018-08-17
  • Supported by:
    The work was supported by the International Colaborative Program(No.2011DFA31860), the National Major Special Project of Science and Technology (No.2013ZX09507005), the National Natural Science Foundation of China (No.21175080), the Science and Technology Commission of Chongqing Municipality, China (No.cstc2014jcyjA10056), and the Academic Innovation Fund of Army Logistics University (No.YZ15-436).
脂质体在药物输送、人造细胞等许多领域有着巨大的应用前景。作为药物载体,脂质体可以保护药物、提高药效、减小药物对机体的毒性、使药物具有靶向性,因此发展或改进脂质体制备方法有着重要的意义。然而,传统的脂质体制备存在耗时长、设备贵、制备条件易变、前后处理步骤多、粒径不均一以及难重复等问题,基于此,脂质体的微流控制备技术逐渐发展起来。研究表明微流控技术在脂质体制备方面有着独特的优势,包括精确地控制脂质体的大小和尺寸分布。本文综述了近年来基于微流控技术的几种脂质体制备方法的研究进展,并对比了几种方法制备的脂质体的性质;进一步分析和探讨了当前微流控技术制备脂质体存在的问题,并展望了其发展趋势和方向。
Liposomes are self-assembled phospholipid vesicles with great potential in drug delivery or fabricating artificial cells. As drugs carriers, liposome has many advantages, such as protecting drugs, improving efficacy, minimizing toxicity, reducing off-target effects, etc., thus liposome fabrication has arouse wide interests. However, there are several issues and concerns of conventional manufacturing techniques for their time-consuming processes, use of costly equipments, poor robustness of parameters, complex pre-and post-processing steps, polydispersity, and batch-to-batch inreproducibility. As a result, microfluidics-based techniques have been developed for liposome fabrication. It has been demonstrated that microfluidic techniques offer a range of advantages compared to conventional methods, especially the ability of precise control over the size and polydispersity of liposomes. This review focuses on recent development of microfluidic techniques with comparison of their outcomes of liposome fabrication. The bottlenecks of microfluidic techniques for liposome fabrication are discussed, and the future development for this field is also prospected.
Contents
1 Introduction
2 Microfluidic hydrodynamic focusing
3 Pulsed jetting
4 Droplet microfuluidics
4.1 Double emulsion templates
4.2 Droplet emulsion transfer
5 Other microfluidic methods
6 Conclusion and outlook

中图分类号: 

()
[1] Bangham A D, Standish M M, Watkins J C. J. Mol. Bio., 1965, 13:238.
[2] Gregoriadis G, Wills E J, Swain C P, Tavill A S. Lancet, 1974, 1(7870):1313.
[3] Shimanouchi T, Umakoshi H, Kuboib R. J. Colloid Interface Sci., 2013, 394:269.
[4] Walde P, Cosentino K, Engel H, Stano P. ChemBioChem, 2010, 11:848.
[5] Jesorka A, Orwar O. Annu. Rev. Anal. Chem., 2008, 1:801.
[6] 古晓晓(Gu X X),杜宝吉(Du B J),李云辉(Li Y H),高莹(Gao Y),李丹(Li D),汪尔康(Wang E K). 化学进展(Progress in Chemistry),2015,8:1093.
[7] Kraft J C, Freeling J P, Wang Z Y, Ho R J Y. J. Pharm. Sci., 2014, 103:29.
[8] Bowey K, Tanguay J F, Tabrizian M. Expert Opin. Drug Delivery, 2012, 9(2):249.
[9] Jahn A, Vreeland W N, Gaitan M, Locascio L E. J. Am. Chem. Soc., 2004, 126:2674.
[10] Jahn A, Reiner J E, Vreeland W N, DeVoe D L, Locascio L E, Gaitan M. J. Nanopart. Res., 2008, 10:925.
[11] Jahn A, Stavis S M, Hong J S, Vreeland W N, DeVoe D L, Gaitan M. ACS Nano, 2010, 4:2077.
[12] 张磊(Zhang L),刘晓燕(Liu X Y),沈晶晶(Shen J J),卢晓梅(Lu X M),范曲立(Fan Q L),黄雄(Huang X).化学进展(Progress in Chemistry), 2013, 8:1375.
[13] Mayer L D, Tai L C, Ko D S, Masin D, Ginsberg R S, Cullis P R, Bally M B. Cancer Res., 1989, 49(21):5922.
[14] Rossier O, Cuvelier D, Borghi N, Puech P, Derenyi I, Buguin A, Nassoy P, Brochard-Wyart F. Langmuir, 2003, 19:575.
[15] 景婧(Jing J),李轶(Li Y),刘剑(Liu J),展思辉(Zhan S H). 化学进展(Progress in Chemistry), 2011,12:2598.
[16] Pott T, Bouvrais H, Meleard P. Chem. Phys. Lipids, 2008, 154:115.
[17] Pautot S, Frisken B, Weitz D. Langmuir, 2003, 19:2870.
[18] Long M, Cans A, Keating C. J. Am. Chem. Soc., 2008, 130:756.
[19] Freiberg S, Zhu X. Int. J. Pharm., 2004, 282:1.
[20] Marre S, Jensen K F. Chem. Soc. Rev., 2010, 39:1183.
[21] Hood R R, DeVoe D L, Atencia J, Vreeland W N, Omiatek D M. Lab Chip, 2014, 14:2403.
[22] Carugo D, Bottaro E, Owen J, Stride E, Nastruzzi C. Sci. Rep., 2016, 6:25876.
[23] Maulucci G, De Spirito M, Arcovito G, Boffi F, Castellano A C, Briganti G. Biophys. J., 2005, 88:3545.
[24] Weibel D B, Whitesides G M. Curr. Opin. Chem.Biol., 2006, 10:584.
[25] Andar A U, Hood R R, Vreeland W N, Devoe D L, Swaan P W. Pharm. Res., 2014, 31:401.
[26] Luo G S, Du L, Wang Y J, Lu Y C, Xu J H. China Particuology, 2011, 6:545.
[27] 林炳承(Lin B C). 分析化学(Chinese Journal of Analytical Chemistry), 2016, 4:491.
[28] Jahn A, Vreeland W N, DeVoe D L, Locascio L E, Gaitan M. Langmuir, 2007, 23:6289.
[29] Wi R, Oh Y, Chae C, Kim D H. Kor. Aust. Rheol. J., 2012, 24:129.
[30] Lo C, Jahn A, Locascio L, Vreeland W. Langmuir, 2010, 26:8559.
[31] Zook J M, Vreeland W N. Soft Matter, 2010, 6:1352.
[32] Leng J, Egelhaaf S U, Cates M E. Biophys. J., 2003, 85:1624.
[33] Jahn A, Lucas F, Wepf R W, Dittrich P S. Langmuir, 2013, 29:1717.
[34] Hood R R, Vreeland W N, DeVoe D L. Lab Chip, 2014, 14:3359.
[35] Tien Sing Young R V, Tabrizian M. Biomicrofluidics, 2015, 9:046501.
[36] Conde A J, Batalla M, Cerda B, Mykhaylyk O, Plank C, Podhajcer O, Cabaleiro J M, Madrid R E, Policastro L. Lab Chip, 2014, 14:4506.
[37] Kennedy M J, Ladouceur H D, Moeller T, Kirui D, Batt C A. Biomicrofluidics, 2012, 6:044119.
[38] Phapal S, Sunthar P. Chem. Phys. Lipids, 2013, 172/173:20.
[39] Vladisavljevic G T, Laouinia A, Charcosset C, Fessi H, Bandulasena H C H, Holdich R G. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2014, 458:168.
[40] Hood R R, DeVoe D L. Small, 2015, 11(43):5790.
[41] Yaralioglu G, Wygant I, Marentis T, Khuri-Yakub B. Anal. Chem., 2004, 76:3694.
[42] Glasgow I, Aubry N. Lab Chip, 2003, 3:114.
[43] Huang X, Caddell R, Yu B, Xu S, Theobald B, Lee L J, Lee R J. Anticancer Res., 2010, 30:463.
[44] Yamashita K, Nagata M P B, Miyazaki M, Nakamura H, Maeda H. Chem. Eng. J., 2010, 165:324.
[45] Hettiarachchi K, Talu E, Longo M L, Dayton P A, Lee A P. Lab Chip, 2007, 7:463.
[46] Talu E, Hettiarachchi K, Powell R L, Lee A P, Dayton P A, Longo M L. Langmuir, 2008, 24:1745.
[47] Hettiarachchi K, Zhang S, Feingold S, Lee A P, Dayton P A. Biotechnol. Prog., 2009, 25:938.
[48] Carugo D, Ankrett D N, Glynne-Jones P, Capretto L, Boltryk R J, Zhang X, Townsend P A, Hill M. Biomicrofluidics, 2011, 5:044108.
[49] Funakoshi K, Suzuki H, Takeuchi S. J. Am. Chem. Soc., 2007, 129:12608.
[50] Stachowiak J C, Richmond D L, Li T H, Liu A P, Parekh S H, Fletcher D A. Proc. Natl. Acad. Sci., 2008, 105:4697.
[51] Richmond D L, Schmid E M, Martens S, Stachowiak J C, Liska N, Fletcher D A. Proc. Natl. Acad. Sci., 2011, 108:9431.
[52] Stachowiak J C, Richmond D L, Li T H, Brochard-Wyart F, Fletcher D A. Lab Chip, 2009, 9:2003.
[53] Ota S, Yoshizawa S, Takeuchi S. Angew. Chem. Int. Ed. 2009, 48:6533.
[54] Kurakazu T, Takeuchi S. 23rd International Conference on Micro Electro Mechanical Systems (MEMS), IEEE, 2010. 1115.
[55] 闫嘉航(Yan J H),赵磊(Zhao L),申少斐(Shen S W),马超(Ma C),王进义(Wang J Y). 分析化学(Chinese Journal of Analytical Chemistry), 2016, 4:562.
[56] 陈九生(Chen J S),蒋稼欢(Jiang J H). 分析化学(Chinese Journal of Analytical Chemistry), 2012, 8:1293.
[57] 秦建华(Qin J H). 色谱(Chinese Journal of Chromatography), 2010, 28(11):1009.
[58] Zhang K, Liang Q L, Ma S, He T X, Ai X N, Hu P, Wang Y M, Luo G A. Microfluidics Nanofluidics, 2010, 4/5:995.
[59] Zhang K, Liang Q L, Ma S, Mu X, Hu P, Wang Y M, Luo G A. Lab Chip, 2009, 20:2992.
[60] Ai X N, Zhou W P, Liang Q L, McGrath P T, Lu H. Lab Chip, 2014, 14:1746.
[61] Zhang K, Liang Q L, Ai X N, Hu P, Wang Y M, Luo G A. Lab Chip, 2011, 11:1271.
[62] Zhang K, Liang Q L, Ai X N, Hu P, Wang Y M, Luo G A. Anal. Chem., 2011, 20:8209.
[63] He T X, Liang Q L, Zhang K, Mu X, Luo T T, Wang Y M, Luo G A. Microfluidic Nanofluidic, 2011, 10:1289.
[64] Zhang Q Q, Zeng S J, Qin J H, et al. J. Mater. Chem.,2011,21(8):2466.
[65] Marre S, Jensen K F. Chem. Soc. Rev., 2010, 39(3):1183.
[66] 马静云(Ma J Y), 姜雷(Jiang L), 秦建华(Qin J H). 色谱(Chinese Journal of Chromatography), 2011, 29(9):890.
[67] van Swaay D, DeMello A. Lab Chip, 2013, 13:752.
[68] Shum H C, Lee D, Yoon I, Kodger T, Weitz D A. Langmuir, 2008, 24:7651.
[69] Utada A, Lorenceau E, Link D, Kaplan P, Stone H, Weitz D. Science, 2005, 308:537.
[70] Tan Y C, Hettiarachchi K, Siu M, Pan Y R, Lee A P. J. Am. Chem. Soc., 2006, 128:5656.
[71] Teh S Y, Khnouf R, Fan H, Lee A P. Biomicrofluidics, 2011, 5:044113.
[72] Davies R T, Kim D, Park J. J. Micromech. Microeng., 2012, 22:055003.
[73] Seo M, Paquet C, Nie Z, Xu S, Kumacheva E. Soft Matter, 2007, 3:986.
[74] Mizuno M, Toyota T, Konishi M, Kageyama Y, Yamada M, Seki M. Langmuir, 2015, 31:2334.
[75] Deng N N, Yelleswarapu M, Huck W T S, J. Am. Chem.Soc., 2016, 138:7584.
[76] Deng N N, Yelleswarapu M, Zheng L F, Huck W T S. J. Am. Chem.Soc., 2017, 139:587
[77] Deng N N, Huck W T S. Angew. Chem.Int.Ed., 2017, 129:9868
[78] Li Y, Lipowsky R, Dimova R, J. Am. Chem. Soc., 2008, 130:12252.
[79] Nishimura K, Suzuki H, Toyota T, Yomo T. J. Colloid Interface Sci., 2012, 376:119.
[80] Hamada T, Miura Y, Komatsu Y, Kishimoto Y, Vestergaard M D, Takagi M. J. Phys. Chem. B, 2008, 112:14678.
[81] Teh S Y, Lin R, Hung L H, Lee A P. Lab Chip, 2008, 8:198.
[82] Hu P C, Li S, Malmstadt N. ACS Appl. Mater. Interfaces, 2011, 3:1434.
[83] Matosevic S, Paegel B M. J. Am. Chem. Soc., 2011, 133:2798.
[84] Karamdad K, Law R V, Seddon J M, Brooks N J, Ces O. Lab Chip, 2015, 15:557.
[85] Kubatta E, Rehage H. Colloid Polym. Sci., 2009, 287:1117.
[86] Abkarian M, Loiseau E, Massiera G. Soft Matter, 2011, 7:4610.
[87] Edwards K A, Baeumner A J. Talanta, 2006, 68:1432.
[88] Kirchner S R, Ohlinger A, Pfeiffer T, Urban A S, Stefani F D, Deak A, Lutich A A, Feldmann J. J.Biophotonics, 2012, 5:40.
[89] Peiro-Salvador T, Ces O, Templer R H, Seddon A M. Biochemistry, 2009, 48:11149.
[90] Patil Y P, Jadhav S. Chem.Phys. Lipids, 2014,177:8.
[91] Maeki M, Saito T, Sato Y, Yasui T, Kaji N, Ishida A, Tani H, Baba Y, Harashima H, Tokeshi M. RSC Adv., 2015, 5:46181.
[92] Kastner E, Kaur R, Lowry D, Moghaddam B, Wilkinson A, Perrie Y. Inter. J. Pharm., 2015, 477:361.
[93] Kastner E, Verma V, Lowry D, Perrie Y. Inter. J. Pharm., 2015, 485:122.
[94] 王振宇(Wang Z Y),王琼(Wang Q),王万刚(Wang W G),李文满(Li W M),胡宁(Hu N),杨军(Yang J). 分析化学(Chinese Journal of Analytical Chemistry), 2015, 8:1113.
[95] Kazayama Y, Teshima T, Osaki T, Takeuchi S, Toyota T. Anal. Chem., 2016,88:1111.
[96] Inglis D W, Davis J A, Austin R H, Sturm J C. Lab Chip, 2006, 6:655.
[97] 褚良银(Chu L Y),汪伟(Wang W),巨晓洁(Ju X J),谢锐(Xie R).化工进展(Chemical Industry and Engineering Progress), 2014, 33:2229.
[98] Polte J, Erler R, Thunemann A F, Sokolov S, Ahner T T, Rademann K, Emmerling F, Kraehnert R. ACS Nano, 2010, 4:1076.
[99] Tarabella G, Balducci A G, Coppedè N, Marasso S, DAngelo P, Barbieri S, Cocuzza M, Colombo P, Sonvico F, Mosca R. Biochim. Biophys. Acta Gen. Subj., 2013, 1830:4374.
[100] Kim Y, Chung Lee B, Ma M, Mulder W J, Fayad Z A, Farokhzad O C, Langer R. Nano Lett., 2012, 12:3587.
[101] Anton N, Bally F, Serra C A, Ali A, Arntz Y, Mely Y, Zhao M, Marchioni E, Jakhmola A, Vandamme T F. Soft Matter, 2012, 8:10628.
[102] Kim S H, Kim J W, Kim D H, Han S H, Weitz D A. Microfluid. Nanofluid., 2013, 14:509.
[103] 何天稀(He T X). 清华大学博士论文(Doctoral Dissertation of Tsinghua University), 2011.
[1] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[2] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[3] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[4] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[5] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[6] 张芳娟, 刘海兵, 高梦琪, 王德富, 牛颜冰, 申少斐. 浓度梯度微流控芯片在药物筛选中的应用[J]. 化学进展, 2021, 33(7): 1138-1151.
[7] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[8] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[9] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[10] 冯迪, 王广华, 唐文来, 杨继全. 微流控阻抗流式细胞仪在单细胞检测中的应用[J]. 化学进展, 2021, 33(4): 555-567.
[11] 杨冬, 高可奕, 杨百勤, 雷蕾, 王丽霞, 薛朝华. 微流控合成体系的装置分类及其用于纳米粒子的制备[J]. 化学进展, 2021, 33(3): 368-379.
[12] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[13] 周文, 张鑫, 马宏鹏, 许杰, 郭斌, 李盘欣. 热塑性淀粉制备的化学与物理机制及方法[J]. 化学进展, 2021, 33(11): 1972-1982.
[14] 蒋炳炎, 彭涛, 袁帅, 周明勇. 微流控芯片上的颗粒被动聚焦技术[J]. 化学进展, 2021, 33(10): 1780-1796.
[15] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
阅读次数
全文


摘要