English
新闻公告
More
化学进展 2021, Vol. 33 Issue (3): 471-489 DOI: 10.7536/PC200562 前一篇   后一篇

所属专题: 金属有机框架材料

• 综述 •

铁基金属-有机骨架及其复合物高级氧化降解水中新兴有机污染物

衣晓虹1,2, 王崇臣1,2,*()   

  1. 1 北京建筑大学建筑结构与环境修复功能材料北京市重点实验室 北京 100044
    2 北京建筑大学环境与能源工程学院 北京 100044
  • 收稿日期:2020-05-25 修回日期:2020-09-15 出版日期:2021-03-20 发布日期:2020-12-28
  • 通讯作者: 王崇臣
  • 作者简介:
    * Corresponding author e-mail:
  • 基金资助:
    国家自然科学基金项目(51878023); 北京自然科学基金项目(8202016); 北京市属高等学校长城学者培养计划(CIT&TCD20180323); 北京市百千万人才工程(2019A22); 北京建筑大学研究生创新项目(PG2020038)

Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites

Xiaohong Yi1,2, Chongchen Wang1,2,*()   

  1. 1 Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture,Beijing 100044, China
    2 School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture,Beijing 100044, China
  • Received:2020-05-25 Revised:2020-09-15 Online:2021-03-20 Published:2020-12-28
  • Contact: Chongchen Wang
  • Supported by:
    the National Natural Science Foundation of China(51878023); the Beijing Natural Science Foundation(8202016); the Great Wall Scholars Training Program Project of Beijing Municipality Universities(CIT&TCD20180323); the Beijing Talent Project(2019A22); the BUCEA Post Graduate Innovation Project(PG2020038)

新兴有机污染物(Emerging organic contaminants,EOCs)是对人体健康及生态环境具有潜在或实质威胁的新型化学污染物。由于其被频繁使用且能在水生生态系统中持久性存在而对水生生物健康和安全造成严重威胁,故引起大众越来越多的关注。以活性污泥法为代表的传统水处理工艺通常不足以消除这些新兴有机污染物。为高效去除新兴有机污染物,基于新材料的高级氧化技术是最主要的深度处理技术之一。铁基金属-有机骨架(Fe-MOFs)及其复合物在诸多领域得到了广泛的应用,特别是在催化氧化去除水中有机污染物方面展现出良好的应用前景。通过合成方法改进、合成后改性以及与特定功能材料复合等方法可有效提升Fe-MOFs及其相关材料的吸附性能、增强其光吸收特性和促进载流子有效分离等。本文重点综述了Fe-MOFs及其复合物高级氧化(光催化、类芬顿和硫酸根自由基($SO_{4}^{-·}$)介导的氧化)去除水中新兴有机污染物的研究进展,并探讨了未来研究所面临的机遇和挑战。

The emergence of emerging organic contaminants(EOCs) has attracted increasing attention due to their wide distribution and persistence in aquatic ecosystems, as well as the potential threat to the health and safety of aquatic organisms. Traditional water treatment processes represented by activated sludge processes are generally insufficient to eliminate these persistent pollutants. For efficient removal of EOCs, advanced oxidation technology based on new materials is one of the most important advanced treatment technologies. Fe-MOFs and their composites have been widely used in many fields, especially in the catalytic oxidation of pollutants in wastewater. With the aid of the improvement of synthesis methods, post-synthetic modification and being composited with specific functional materials, Fe-MOFs can be used to effectively improve the adsorption performance, enhance the light absorption characteristics, and promote the effective separation of charge carriers. The review focuses on the progress of advanced oxidation processes(photocatalysis, Fenton-like reaction and sulfate radical($SO_{4}^{-·}$) mediated oxidation) of Fe-MOFs and their composites to remove emerging organic contaminants in wastewater. As well, the opportunities and challenges of Fe-MOFs in the field of EOCs removal are proposed.

Contents

1 Introduction

2 Preparation of Fe?MOFs and their composites for oxidative degradation of EOCs

2.1 MIL?100(Fe) and its composites

2.2 MIL?101(Fe) and its composites

2.3 MIL?53(Fe) and its composites

2.4 MIL?88(Fe) and its composites

3 The application of Fe?MOFs and their composites in advanced oxidation degradation of EOCs

3.1 Advanced oxidative degradation of drugs in wastewater by Fe?MOFs and their composites

3.2 Advanced oxidative degradation of environmental hormone in wastewater by Fe?MOFs and their composites

3.3 Advanced oxidative degradation of pesticide in wastewater by Fe?MOFs and their composites

3.4 Advanced oxidative degradation of multiple EOCs in wastewater by Fe?MOFs and their composites

4 The influencing factors of advanced oxidation degradation of EOCs by Fe?MOFs and their composites

4.1 The influence of physical properties of materials

4.2 The influence of operation conditions

4.3 The influence of active substances

5 Conclusions and prospects

()
图1 各羧酸配体图和Fe-MOFs结构图:(a) 对苯二甲酸;(b) MIL-53(Fe)[42];(c) MIL-88B(Fe)[42];(d) MIL-101(Fe)[42];(e) 均苯三甲酸;(f) MIL-100(Fe)[44];(g) 富马酸;(h) MIL-88A(Fe)[43]
Fig.1 Diagrams of carboxylic acid ligands and Fe-MOFs structure:(a) 1,4-dicarboxybenzene;(b) MIL-53(Fe)[42];(c) MIL-88B(Fe)[42];(d) MIL-101(Fe)[42];(e) 1,3,5-benzenetricarboxylic acid;(f) MIL-100(Fe)[44];(g) fumaric acid;(h) MIL-88A(Fe)[43]
表1 铁基MOFs及其复合材料对EOCs的降解性能
Table 1 The degradation performance of iron-based MOFs and their composites for EOCs
Catalysts/Dosage (g·L-1) Target Pollutants/Volume
(mL)/concentration
(mg·L-1)/pH
Light Source Reaction Time (min) Degradation Efficiency (%) ref
Photocatalytic oxidation
WO3/MIL-53(Fe)/0.2 2,4-dichlorophenoxyacetic
acid/100/45/2.5
sun light 240 ~100 45
CdS/MIL-53(Fe)/0.75 ketorolac tromethamine/100/10/6 85 W Oreva CFL bulb(λ≥ 420 nm) 330 80 46
MIL-88A/g-C3N4/1.0 tetracycline/100/10/NA 1000 W iodine tungsten lamp(λ≥ 420 m) 120 22 47
Ag/AgCl@MIL-88A(Fe)/0.4 ibuprofen/50/10/NA 500 W Xe lamp(λ≥ 420 nm) 210 100 48
BiOI/MIL-88B(Fe)/0.3 ciprofloxacin/100/10/NA 150 W Xe lamp(AM 1.5G) 270 80 49
MIL-100(Fe)/PANI/0.25 tetracycline/200/10/NA 300 W Xe lamp 120 84 36
Fenton-like reaction
1T-MoS2@MIL-53(Fe)+20 mmol/L·H2O2/0.4 ibuprofen/50/10/7.0 500 W Xe lamp(λ≥ 420 nm) 120 100 50
g-C3N4/PDI@NH2-MIL-53(Fe)+10 mmol/L·H2O2/0.4 tetracycline/50/50/6.0 5 W LED white lamp(380~800 nm) 40 90 51
g-C3N4/PDI@NH2-MIL-53(Fe)+10 mmol/L·H2O2/0.4 carbamazepine/50/50/6.0 5 W LED white lamp(380~800 nm) 150 78 51
g-C3N4/PDI@NH2-MIL-53(Fe)+10 mmol/L·H2O2/0.4 bisphenol A/50/50/6.0 5 W LED white lamp(380~800 nm) 10 100 51
g-C3N4/PDI@NH2-MIL-53(Fe)+10 mmol/L·H2O2/0.2 bisphenol A/50/2/6.0 5 W LED white lamp(380~800 nm) 10 100 51
MIL-88A(Fe)+100 μL H 2O2/0.2 bisphenol A/50/10/NA 350 mW LED visible light 60 ~100 52
PANI/MIL-88A(Fe)+20 μL H 2O2/0.2 bisphenol A/50/10/5.1 5 W LED visible light 30 100 53
CUS-MIL-100(Fe)+6 mmol/L H2O2/0.5 sulfamethazine/80/20/3.0 in dark 60 100 17
Pd@MIL-100(Fe)+40 μL H 2O2/0.125 theophylline/40/20/4.0 300 W Xe lamp(λ≥ 420 nm) 150 99.5 54
Pd@MIL-100(Fe)+40 μL H 2O2/0.125 ibuprofen /40/20/4.0 300 W Xe lamp(λ≥ 420 nm) 150 100 54
Pd@MIL-100(Fe)+40 μL H 2O2/0.125 bisphenol A/40/20/4.0 300 W Xe lamp(λ≥ 420 nm) 150 68 54
Pd-PTA-MIL-100(Fe)+40 μL H 2O2/0.125 theophylline/40/20/4.0 300 W Xe lamp(λ≥ 420 nm) 150 99.5 55
Pd-PTA-MIL-100(Fe)+40 μL H 2O2/0.125 ibuprofen/40/20/4.0 300 W Xe lamp(λ≥ 420 nm) 180 99.5 55
续表1 铁基MOFs及其复合材料对EOCs的降解性能
Table 1 (continued) The degradation performance of iron-based MOFs and their composites for EOCs
Catalysts/Dosage (g·L-1) Target Pollutants/Volume
(mL)/concentration
(mg·L-1)/pH
Light Source Reaction Time (min) Degradation Efficiency (%) ref
WO3/MIL-100(Fe)+40 μL H 2O2/0.25 bisphenol A/80/10/3.0 25 W LED visible light 20 100 56
MIL-100(Fe)/g-C3N4+50 μL H 2O2/0.5 diclofenac sodium/200/0.1 mmol/L/NA 300 W Xe lamp 50 100 21
MIL-100(Fe)/Fe-SPC+40 mmol/L·H2O2/1.0 thiamethoxam/50/60/7.5 600 W ultrasonic probe 100 100 57
Cu2O/MIL-100(Fe/Cu)+49 mmol/L H2O2/0.5 thiacloprid/50/80/7.47 500 W Xe lamp 25 90 58
MIL-100(Fe)/TiO2+20 μL H 2O2/0.05 tetracycline /100/100/NA 450 W Xe arc lamp 60 85.8 59
MIL-100(Fe)@Fe3O4/CA+H2O2/0.2 tetracycline /50/10/5.0 150 W Xe lamp(λ≥ 400 nm) 210 85 60
M.MIL-100(Fe)@ZnO +10 mmol/L·H2O2/0.2 bisphenol A/50/5/2.0 LSH-500 W Xe arc lamp 60 ~100 61
M.MIL-100(Fe)@ZnO +10 mmol/L·H2O2/0.2 atrazine/50/5/2.0 LSH-500 W Xe arc lamp 120 >80 61
Oxidation of activated persulfate
AgIO3/MIL-53(Fe)+50 mg·L-1 PS/0.5 methyl malathion/100/20/5.0 sun light 120 93 37
AgIO3/MIL-53(Fe)+50 mg·L-1 PS/0.5 chlorpyrifos/100/20/5.0 sun light 120 97 37
AgIO3/MIL-53(Fe)+50 mg·L-1 PS/0.5 methyl malathion(binary mixture)/100/20/5.0 sun light 180 100 37
AgIO3/MIL-53(Fe)+50 mg·L-1 PS/0.5 chlorpyrifos(binary mixture)/100/20/5.0 sun light 180 50 37
MIL-88A@MIP+10.8 mmol/L PS/0.5 dibutyl phthalate/100/3.5/ not adjusted in dark 480 77.4 62
MIL-88A@MIP+10.8 mmol/L PS/0.5 dibutyl phthalate/100/4.0/ not adjusted in dark 480 >80.4 62
MIL-88A@MIP+10.8 mmol/L PS/0.5 dibutyl phthalate/100/5.0/ not adjusted in dark 480 80.4 62
MIL-88B(Fe)+2 mmol/L PS/0.6 bisphenol A/100/10/6.5~7.2 300 W Xe lamp(λ≥ 420 nm) 25 100 63
Bi12O17Cl2/MIL-100(Fe)+0.2 mmol/L PS/0.25 bisphenol A/200/10/5.2 300 W Xe lamp 40 100 64
g-C3N4/MIL-101(Fe)+1 mmol/L PS/0.5 bisphenol A/NA/10/NA 300 W Xe lamp(λ≥ 400 nm) 60 98 34
AQS-NH-MIL-101(Fe)+10 mmol/L PS/0.2 bisphenol A/25/60/5.76 in dark 120 97.7 35
图2 (a) Pd/MIL-100(Fe)[54]、(b) Pd-PTA-MIL-100(Fe)[55]、(c) CUS-MIL-100(Fe)[17]、(d) MIL-100(Fe)/Fe-SPC[57]、(e) Cu2O/MIL(Fe/Cu)[58]、(f) Cu2O/MIL(Fe)[58]、(g) MIL-100(Fe)/Ti2[59]、(h) M.MIL-100(Fe)@ZnO[61]和(i) MIL-100(Fe)@Fe3O4/CA[60]的形貌图
Fig.2 The morphologies of (a) Pd/MIL-100(Fe)[54],(b) Pd-PTA-MIL-100(Fe)[55],(c) CUS-MIL-100(Fe)[17],(d) MIL-100(Fe)/Fe-SPC[57],(e) Cu2O/MIL(Fe/Cu)[58];(f) Cu2O/MIL(Fe)[58];(g) MIL-100(Fe)/Ti2[59];(h) M.MIL-100(Fe)@ZnO[61] and (i) MIL-100(Fe)@Fe3O4/CA[60]
图3 (a) MIL-100(Fe)/g-C3N4[21]、(b) MIL-100(Fe)/PANI[36]、(c) WO3/MIL-100(Fe)[56]和(d) Bi12O17Cl2/MIL-100(Fe)[64]的形貌图
Fig.3 The morphologies of (a) MIL-100(Fe)/g-C3N4[21],(b) MIL-100(Fe)/PANI[36],(c) WO3/MIL-100(Fe)[56] and (d) Bi12O17Cl2/MIL-100(Fe)[64]
图4 (a) g-C3N4/MIL-101(Fe)[34]和(b) AQS-NH-MIL-101(Fe)[35]的形貌图
Fig.4 The morphologies of (a) g-C3N4/MIL-101(Fe)[34] and (b) AQS-NH-MIL-101(Fe)[35]
图5 (a) WO3/MIL-53(Fe)[45]、(b) 1T-MoS2@MIL-53(Fe)[50]、(c) CdS/MIL-53(Fe)[46]、(d) AgIO3/MIL-53(Fe)[37]和(e) g-C3N4/PDI@NH2-MIL-53(Fe)[51]的形貌图
Fig.5 The morphologies of(a) WO3/MIL-53(Fe)[45],(b) 1T-MoS2@MIL-53(Fe)[50],(c) CdS/MIL-53(Fe)[46],(d) AgIO3/MIL-53(Fe)[37] and (e) g-C3N4/PDI@NH2-MIL-53(Fe)[51]
图6 (a) MIL-88A-1[52]、(b) MIL-88A-2[52]、(c) PANI/MIL-88A(Fe)[53]、(d) MIL-88A/g-C3N4[47]、(e) MIL-88A@MIP[62]、(f) Ag/AgCl@MIL-88A(Fe)[48]、(g) MIL-88B(Fe)[63]、(h) MIL-88B(Fe)[49]和(i) BiOI/MIL-88B(Fe)[49]的形貌图
Fig.6 The morphologies of(a) MIL-88A-1[52],(b) MIL-88A-2[52],(c) PANI/MIL-88A(Fe)[53],(d) MIL-88A/g-C3N4[47],(e) MIL-88A@MIP[62],(f) Ag/AgCl@MIL-88A(Fe)[48],(g) MIL-88B(Fe)[63],(h) MIL-88B(Fe)[49] and (i) BiOI/MIL-88B(Fe)[49]
图7 (a) MIL-88A-2[52]、(b) PANI/MIL-88A(Fe)[53]和(c) WO3/MIL-100(Fe)[53]光芬顿降解BPA路径图
Fig.7 The proposed pathways for the photo-Fenton degradation of BPA by (a) MIL-88A-2[52],(b) PANI/MIL-88A(Fe)[53] and (c) WO3/MIL-100(Fe)[56]
图8 (a) M88/Vis/PS系统中BPA降解的可能转化路径;(b) M88/PS/Vis体系中BPA及其副产物的风险评估;(c) M88/PS/Vis体系对CCK-8的相对吸收强度变化;(d) M88/PS/Vis体系对BPA的矿化效率[63]
Fig.8 (a) Proposed transformation pathways for BPA degradation in M88/Vis/PS system;(b) risk assessment of BPA and its by-products via ECOSAR in M88/PS/Vis system;(c) the relative absorption intensity variation of M88/PS/Vis system to CCK-8;(d) the efficiency of BPA mineralization by the M88/PS/Vis system[63]
图9 (a) BPA的化学结构;(b) BPA的HOMO和LUMO轨道;(c) BPA的自然种群分析电荷分布与Fukui指数;(d) Bi12O17Cl2/MIL-100(Fe)活化PS降解BPA的可能路径[64]
Fig.9 (a) BPA chemical structure;(b) HOMO and LUMO orbitals of BPA;(c) NPA charge distribution and Fukui index of BPA;(d) Proposed pathways of photocatalytic degradation toward BPA over BM200/light/PS system[64]
[1]
Wang C C, Li J R, Lv X L, Zhang Y Q, Guo G S. Energy Environ. Sci., 2014, 7(9):2831.
[2]
Gao Q, Xu J, Bu X H. Coord. Chem. Rev., 2019, 378:17.
[3]
Zhao C, Wang Z H, Li X, Yi X H, Chu H Y, Chen X, Wang C C. Chem. Eng. J., 2020, 389:123431.
[4]
Sharma V K, Feng M B. J. Hazard. Mater., 2019, 372:3.
[5]
Fono L J, McDonald H S. J. Am. Water Work. Assoc., 2008, 100(11):50.
[6]
Yu M L, Wang J J, Tang L, Feng C Y, Liu H Y, Zhang H, Peng B, Chen Z M, Xie Q Q. Water Res., 2020, 175:115673.
[7]
Deng Y C, Tang L, Zeng G M, Zhu Z J, Yan M, Zhou Y Y, Wang J J, Liu Y N, Wang J J. Appl. Catal. B: Environ., 2017, 203:343.
[8]
Deng Y C, Tang L, Zeng G M, Wang J J, Zhou Y Y, Wang J J, Tang J, Wang L L, Feng C Y. J. Colloid Interface Sci., 2018, 509:219.
[9]
Wang J L, Wang S Z. J. Environ. Manag., 2016, 182:620.
[10]
Chong M N, Jin B, Chow C W K, Saint C. Water Res., 2010, 44(10):2997.
[11]
Hu P D, Long M C. Appl. Catal. B: Environ., 2016, 181:103.
[12]
Wang J L, Wang S Z. Chem. Eng. J., 2018, 334:1502.
[13]
Minella M, Bertinetti S, Hanna K, Minero C, Vione D. Environ. Res., 2019, 179:108750.
[14]
Guo S, Wang H J, Yang W, Fida H, You L M, Zhou K. Appl. Catal. B: Environ., 2020, 262:118250.
[15]
Xu X M, Chen W M, Zong S Y, Ren X, Liu D. J. Hazard. Mater., 2019, 377:62.
[16]
Liang S X, Jia Z, Zhang W C, Li X F, Wang W M, Lin H C, Zhang L C. Appl. Catal. B: Environ., 2018, 221:108.
[17]
Tang J T, Wang J L. Environ. Sci. Technol., 2018, 52(9):5367.
[18]
Wang Y B, Zhao H Y, Zhao G H, Wang Y J, Yang X C. Progress in Chemistry, 2013, 25(8):1246.
王彦斌, 赵红颖, 赵国华, 王宇晶, 杨修春. 化学进展, 2013, 25(8):1246.
[19]
Huang G, Chen Y Z, Jiang H L. Acta Chimica Sin., 2016, 74(2):113.
黄刚, 陈玉贞, 江海龙. 化学学报, 2016, 74(2):113.
[20]
Wang C C, Du X D, Li J, Guo X X, Wang P, Zhang J. Appl. Catal. B: Environ., 2016, 193:198.
[21]
Du X D, Yi X H, Wang P, Deng J, Wang C C. Chin. J. Catal., 2019, 40(1):70.
[22]
Wang C C, Yi X H, Wang P. Appl. Catal. B: Environ., 2019, 247:24.
[23]
Wang C C, Wang X, Liu W. Chem. Eng. J., 2019:123601.
[24]
Guo R M, Bai J Q, Zhang H, Xie Y B, Li J R. Progress in Chemistry, 2016, 28(2/3):232.
郭瑞梅, 白金泉, 张恒, 谢亚勃, 李建荣. 化学进展, 2016, 28(2/3):232.
[25]
Gao C, Chen S, Quan X, Yu H T, Zhang Y B. J. Catal., 2017, 356:125.
[26]
Laurier K G M, Vermoortele F, Ameloot R, de Vos D E, Hofkens J, Roeffaers M B J. J. Am. Chem. Soc., 2013, 135(39):14488.
[27]
Wang D K, Wang M T, Li Z H. ACS Catal., 2015, 5(11):6852.
[28]
Zhang T, Lin W B. Chem. Soc. Rev., 2014, 43(16):5982.
[29]
Li Y, Xu H, Ouyang S X, Ye J H. Phys. Chem. Chem. Phys., 2016, 18(11):7563.
[30]
Wang D K, Li Z H. Res. Chem. Intermed., 2017, 43(9):5169.
[31]
Ai L H, Zhang C H, Li L L, Jiang J. Appl. Catal. B: Environ., 2014, 148/149:191.
[32]
Zhang C H, Ai L H, Jiang J. J. Mater. Chem. A, 2015, 3(6):3074.
[33]
Gao Y W, Li S M, Li Y X, Yao L Y, Zhang H. Appl. Catal. B: Environ., 2017, 202:165.
[34]
Gong Y, Yang B, Zhang H, Zhao X. J. Mater. Chem. A, 2018, 6(46):23703.
[35]
Li X H, Guo W L, Liu Z H, Wang R Q, Liu H. J. Hazard. Mater., 2017, 324:665.
[36]
Chen D D, Yi X H, Zhao C, Fu H, Wang P, Wang C C. Chemosphere, 2020, 245:125659.
[37]
Oladipo A A, Vaziri R, Abureesh M A. J. Taiwan Inst. Chem. Eng., 2018, 83:133.
[38]
Farrusseng D, Aguado S, Pinel C. Angew. Chem. Int. Ed., 2009, 48(41):7502.
[39]
Li X R, Le Z Y, Chen X L, Li Z Q, Wang W C, Liu X Y, Wu A, Xu P C, Zhang D Q. Appl. Catal. B: Environ., 2018, 236:501.
[40]
Horcajada P, SurblÉ S, Serre C, Hong D Y, Seo Y K, Chang J S, Grenèche J M, Margiolaki I, FÉrey G. Chem. Commun., 2007,(27):2820.
[41]
Hupp J T. Science, 2005, 309(5743):2008.
[42]
Bauer S, Serre C, Devic T, Horcajada P, Marrot J, Fe?rey G, Stock N. Inorg. Chem., 2008, 47(17):7568.
[43]
Chalati T, Horcajada P, Gref R, Couvreur P, Serre C. J. Mater. Chem., 2011, 21(7):2220.
[44]
Llewellyn P L, Bourrelly S, Serre C, Vimont A, Daturi M, Hamon L, de Weireld G, Chang J S, Hong D Y, Kyu Hwang Y, Hwa Jhung S, Fe?rey G. Langmuir, 2008, 24(14):7245.
[45]
Oladipo A A. Process. Saf. Environ. Prot., 2018, 116:413.
[46]
Chaturvedi G, Kaur A, Kansal S K. J. Phys. Chem. C, 2019, 123(27):16857.
[47]
Shao Z W, Zhang D F, Li H, Su C H, Pu X P, Geng Y L. Sep. Purif. Technol., 2019, 220:16.
[48]
Huang W Y, Jing C W, Zhang X D, Tang M Q, Tang L, Wu M H, Liu N. Chem. Eng. J., 2018, 349:603.
[49]
Jahurul Islam M, Kim H K, Amaranatha Reddy D, Kim Y, Ma R, Baek H, Kim J, Kim T K. Dalton Trans., 2017, 46(18):6013.
[50]
Liu N, Huang W Y, Tang M Q, Yin C C, Gao B, Li Z M, Tang L, Lei J Q, Cui L F, Zhang X D. Chem. Eng. J., 2019, 359:254.
[51]
Li Y Y, Fang Y, Cao Z L, Li N J, Chen D Y, Xu Q F, Lu J M. Appl. Catal. B: Environ., 2019, 250:150.
[52]
Fu H F, Song X X, Wu L, Zhao C, Wang P, Wang C C. Mater. Res. Bull., 2020, 125:110806.
[53]
Chen D D, Yi X H, Ling L, Wang C C, Wang P. Appl. Organomet. Chem., 2020, 34(9):e5795.
[54]
Liang R W, Luo S G, Jing F F, Shen L J, Qin N, Wu L. Appl. Catal. B: Environ., 2015, 176/177:240.
[55]
Liang R W, Huang R K, Ying S M, Wang X X, Yan G Y, Wu L. Nano Res., 2018, 11(2):1109.
[56]
Wang J W, Qiu F G, Wang P, Ge C J, Wang C C. J. Clean. Prod., 2021, 279:123408.
[57]
Wei Y N, Wang B F, Cui X F, Muhammad Y, Zhang Y J, Huang Z Q, Li X S, Zhao Z X, Zhao Z X. ACS Appl. Mater. Interfaces, 2018, 10(41):35260.
[58]
Zhong Z, Li M, Fu J H, Wang Y X, Muhammad Y, Li S H, Wang J X, Zhao Z X, Zhao Z X. Chem. Eng. J., 2020, 395:125184.
[59]
He X, Fang H, Gosztola D J, Jiang Z, Jena P, Wang W N. ACS Appl. Mater. Interfaces, 2019, 11(13):12516.
[60]
Rasheed H U, Lv X, Zhang S Y, Wei W, Ullah N, Xie J M. Adv. Powder Technol., 2018, 29(12):3305.
[61]
Ahmad M, Chen S, Ye F, Quan X, Afzal S, Yu H T, Zhao X Y. Appl. Catal. B: Environ., 2019, 245:428.
[62]
Wang J M, Guan Z Y, Wan J Q, Wang Y, Ma Y W, Yan Z C, Zhang G H. Environ. Sci., 2017, 38(12):5124.
王九妹, 关泽宇, 万金泉, 王艳, 马邕文, 闫志成, 张桂华. 环境科学, 2017, 38(12):5124).
[63]
Lin J W, Hu Y Y, Wang L X, Liang D H, Ruan X, Shao S C. Chem. Eng. J., 2020, 382:122931.
[64]
Zhao C, Wang J S, Chen X, Wang Z H, Ji H D, Chen L, Liu W, Wang C C. Sci. Total. Environ., 2021, 752:141901.
[65]
Seo Y K, Yoon J W, Lee J S, Lee U H, Hwang Y K, Jun C H, Horcajada P, Serre C, Chang J S. Microporous Mesoporous Mater., 2012, 157:137.
[66]
Moon H R, Lim D W, Suh M P. Chem. Soc. Rev., 2013, 42(4):1807.
[67]
Bayaguud A, Chen K, Wei Y G. Nano Res., 2016, 9(12):3858.
[68]
Zhou L H, Fu P, Wen D H, Yuan Y, Zhou S G. Appl. Catal. B: Environ., 2016, 181:635.
[69]
Shi M J, Wei W, Jiang Z F, Han H K, Gao J R, Xie J M. RSC Adv., 2016, 6(30):25255.
[70]
Leng Y Q, Guo W L, Shi X, Li Y Y, Wang A Q, Hao F F, Xing L T. Chem. Eng. J., 2014, 240:338.
[71]
Araya T, Jia M K, Yang J, Zhao P, Cai K, Ma W H, Huang Y P. Appl. Catal. B: Environ., 2017, 203:768.
[72]
Xu H, Yi J J, She X J, Liu Q, Song L, Chen S M, Yang Y C, Song Y H, Vajtai R, Lou J, Li H M, Yuan S Q, Wu J J, Ajayan P M. Appl. Catal. B: Environ., 2018, 220:379.
[73]
Hu L X, Deng G H, Lu W C, Pang S W, Hu X. Appl. Surf. Sci., 2017, 410:401.
[74]
Song S, Hong F Y, He Z Q, Cai Q L, Chen J M. J. Colloid Interface Sci., 2012, 378(1):159.
[75]
Chu S, Wang Y, Guo Y, Feng J Y, Wang C C, Luo W J, Fan X X, Zou Z G. ACS Catal., 2013, 3(5):912.
[76]
Wang L W, Zhang X, Yu X, Gao fene, Shen Z Y, Zhang X L, Ge S G, Liu J, Gu Z J, Chen C Y. Adv. Mater., 2019, 31(33):1901965.
[77]
Guo Y X, Jia Z Q, Shi Q, Liu Z J, Wang X, Li L X. Microporous Mesoporous Mater., 2019, 285:215.
[78]
Yan J, Yu Y, Xiao J, Li Y W, Li Z. Ind. Eng. Chem. Res., 2016, 55(45):11767.
[79]
Qian K, Fang G Z, Wang S. Chem. Commun., 2011, 47(36):10118.
[80]
Yang S, Xu D, Chen B, Luo B, Shi W. Appl. Catal. B: Environ., 2017, 204:602.
[81]
Huang H, Han X, Li X, Wang S, Chu P K, Zhang Y. ACS Appl. Mater. Interfaces, 2015, 7(1):482.
[82]
Anjali R, Shanthakumar S. J. Environ. Manag., 2019, 246:51.
[83]
Reardon S. Nature, 2014, 509(7499):141.
[84]
García-Galán M J, González Blanco S, LÓpez Roldán R, Díaz-Cruz S, BarcelÓ D. Sci. Total Environ., 2012, 437:403.
[85]
Kaur A, Umar A, Kansal S K. J. Colloid Interface Sci., 2015, 459:257.
[86]
Wang J J, Tang L, Zeng G M, Deng Y C, Liu Y N, Wang L L, Zhou Y Y, Guo Z, Wang J J, Zhang C. Appl. Catal. B: Environ., 2017, 209:285.
[87]
Rubasinghege G, Gurung R, Rijal H, Maldonado-Torres S, Chan A, Acharya S, Rogelj S, Piyasena M. Water Res., 2018, 131:22.
[88]
Sun J Y, Guo Y P, Wang Y, Cao D, Tian S C, Xiao K, Mao R, Zhao X. Chem. Eng. J., 2018, 332:312.
[89]
Vandenberg L N, Hauser R, Marcus M, Olea N, Welshons W V. Reproductive Toxicol., 2007, 24(2):139.
[90]
Lan H C, Zhang G, Zhang H W, Liu H J, Liu R P, Qu J H. Catal. Commun., 2017, 98:9.
[91]
Qiu P X, Yao J H, Chen H, Jiang F, Xie X C. J. Hazard. Mater., 2016, 317:158.
[92]
Meijide J, GÓmez J, Pazos M, Sanromán M A. J. Hazard. Mater., 2016, 319:43.
[93]
Bani N D, Šoji D V, Krsti J B, Abramovi B F. Water Air Soil Poll., 2014, 225(5):1954.
[94]
Al Hakim S, Jaber S, Zein Eddine N, Baalbaki A, Ghauch A. Chem. Eng. J., 2020, 380:122478.
[95]
Blake K V, Massey K L, Hendeles L, Nickerson D, Neims A. Ann. Emerg. Med., 1988, 17(10):1024.
[96]
Singh S, Kumar V, Chauhan A, Datta S, Wani A B, Singh N, Singh J. Environ. Chem. Lett., 2018, 16(1):211.
[97]
Wang S Z, Wang J L. J. Hazard. Mater., 2017, 321:639.
[98]
Deng S Y, Chen Y, Wang D S, Shi T Z, Wu X W, Ma X, Li X Q, Hua R M, Tang X Y, Li Q X. J. Hazard. Mater., 2015, 297:17.
[99]
Li H X, Wan J Q, Ma Y W, Wang Y, Chen X, Guan Z Y. J. Hazard. Mater., 2016, 318:154.
[100]
Bedin K C, Muche D N F, Melo M A Jr, Freitas A L M, Gonçalves R V, Souza F L. ChemCatChem, 2020, 12(12):3156.
[101]
Li W Y, Xu,. Acta Chimica Sin., 2019, 77(8):705. 9.
李午阳, 徐乐瑾. 化学学报, 2019, 77(8):705.
[102]
Liu X J, Lv T, Pan L K, Sun Z, Sun C Q. Desalination Water Treatment, 2012, 42:216.
[103]
Wang P, Wang J, Wang X, Yu H, Yu J, Lei M, Wang Y. Appl. Catal. B: Environ., 2013,5, 8:2924.
[104]
Alvaro M, Carbonell E, Ferrer B, LlabrÉs i Xamena F, Garcia H. Chem. Eur. J., 2007, 13(18):5106.
[105]
Kavitha V, Palanivelu K. Chemosphere, 2004, 55(9):1235.
[106]
de Luna M D G, Briones R M, Su C C, Lu M C. Chemosphere, 2013, 90(4):1444.
[107]
Mirzaei A, Chen Z, Haghighat F, Yerushalmi L. Chemosphere, 2017, 174:665.
[108]
Pignatello J J, Oliveros E, MacKay A. Crit. Rev. Environ. Sci. Technol., 2006, 36(1):1.
[109]
Costa R C C, Moura F C C, Ardisson J D, Fabris J D, Lago R M. Appl. Catal. B: Environ., 2008, 83(1/2):131.
[110]
Waldemer R H, Tratnyek P G, Johnson R L, Nurmi J T. Environ. Sci. Technol., 2007, 41(3):1010.
[111]
Anipsitakis G P, Dionysiou D D. Environ. Sci. Technol., 2004, 38(13):3705.
[112]
Hayon E, Treinin A, Wilf J. J. Am. Chem. Soc., 1972, 94(1):47.
[113]
Liang C J, Su H W. Ind. Eng. Chem. Res., 2009, 48(11):5558.
[114]
Zhang M, Chen X Q, Zhou H, Murugananthan M, Zhang Y R. Chem. Eng. J., 2015, 264:39.
[115]
Matzek L W, Carter K E. Chemosphere, 2016, 151:178.
[116]
Li X N, Liu J Y, Rykov A I, Han H X, Jin C Z, Liu X, Wang J H. Appl. Catal. B: Environ., 2015, 179:196.
[117]
Burns J M, Cooper W J, Ferry J L, King D W, DiMento B P, McNeill K, Miller C J, Miller W L, Peake B M, Rusak S A, Rose A L, Waite T D. Aquat. Sci., 2012, 74(4):683.
[118]
Tan C Q, Gao N Y, Deng Y, An N, Deng J. Chem. Eng. J., 2012, 203:294.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[8] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[9] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[10] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[11] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[12] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[13] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[14] 周丽, Abdelkrim Yasmine, 姜志国, 于中振, 曲晋. 微塑料:生物效应、分析和降解方法综述[J]. 化学进展, 2022, 34(9): 1935-1946.
[15] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.