English
新闻公告
More
化学进展 2021, Vol. 33 Issue (3): 490-502 DOI: 10.7536/PC200560 前一篇   

• 综述 •

印刷有机数字电路及应用

张静1, 张小涛1, 任晓辰1,*(), 胡文平1,*()   

  1. 1 天津大学化学系 天津市分子光电科学重点实验室 天津 300072
  • 收稿日期:2020-05-22 修回日期:2020-08-17 出版日期:2021-03-20 发布日期:2020-12-28
  • 通讯作者: 任晓辰, 胡文平
  • 作者简介:
    * Corresponding author e-mail: (Xiaochen Ren); (Wenping Hu)
  • 基金资助:
    科技部国家重点研发计划(2017YFA0204503); 科技部国家重点研发计划(2016YFB0401100); 国家自然科学基金项目(91833306); 国家自然科学基金项目(51633006); 国家自然科学基金项目(51703159); 国家自然科学基金项目(51703160); 国家自然科学基金项目(51733004)

Printed Organic Digital Circuits and Its Applications

Jing Zhang1, Xiaotao Zhang1, Xiaochen Ren1,*(), Wenping Hu1,*()   

  1. 1 Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University,Tianjin 300072, China
  • Received:2020-05-22 Revised:2020-08-17 Online:2021-03-20 Published:2020-12-28
  • Contact: Xiaochen Ren, Wenping Hu
  • Supported by:
    The work was supported the National Key R&D Programs(2017YFA0204503); The work was supported the National Key R&D Programs(2016YFB0401100); the National Natural Science Foundation of China(91833306); the National Natural Science Foundation of China(51633006); the National Natural Science Foundation of China(51703159); the National Natural Science Foundation of China(51703160); the National Natural Science Foundation of China(51733004)

印刷有机电子技术是基于印刷原理的有机电子器件制造技术,是指将有机电子材料配制成功能性油墨,用印刷方式来制造电子器件与系统的方法,其发展涉及到材料化学、微电子学等多个学科方面的知识。其独特的制造方式和器件形态具有柔性、低成本、大面积制造等优势,并且与传统硅基电子器件在应用场合上形成了互补,在生物传感、电子皮肤、柔性显示等领域展示出优势。为了及时跟进这一快速发展的领域,对领域的发展有宏观的把握,本文从印刷技术和电路系统的角度进行了全面概述,介绍了喷墨打印、丝网印刷和转印印刷等印刷技术和基于印刷技术制备的有机数字电路(反相器、与非门、环形振荡器、D触发器),以及实现功能化的印刷电子应用(RFID、电子皮肤、OLED显示驱动背板等);最后,对本领域目前存在的问题和未来发展方向做了简要探讨。

Printed organic electronic technology is the electronic manufacturing technology based on the printing method, and particularly refers to the printing of electronic devices by using functional inks consisting of organic semiconductor materials. The development of this technology involves multidisciplinary approaches including material chemistry and microelectronics. The unique fabrication method and device form brings the flexibility, low-cost and large-area processability to the devices, complementary to Si based electronics in the applications of biosensing, electronic skin and flexible display. To capture the rapid progress of this research field, a timely review of recent work is necessary. In addition, a better understanding of both material processing and digital electronics is essential for the development of this field. In this work, we provide a comprehensive overview from the perspective of printing technology and circuit systems. Printing technologies such as inkjet printing, screen printing, and transfer printing, including both the printing mechanisms and their applications related to organic devices are introduced. The functionality and the development challenge of organic digital circuits such as inverter, NAND gate, ring oscillator and D-type flip-flop, are summarized. We then review the applications of printed organic electronics, such as RFID, electronic skin, and OLED displays. Finally, the challenges and the outlook of printed organic electronics are briefly discussed.

Contents

1 Introduction

2 Printing Technology

2.1 Printing methods

2.2 Printed electronics

3 Organic digital circuit

3.1 Inverter

3.2 NAND

3.3 Ring oscillator

3.4 D?Flip?flop

4 Applications

4.1 RFID tag

4.2 Electronic Skin

4.3 OLED display

5 Conclusion and outlook

()
图1 (a) 传统的基于硅的电子产品,[10](b) 贴在皮肤上的印刷电子产品[11]
Fig.1 (a) Traditional silicon-based electronic products[10](b) Printed electronic products attached to the skin[11]
图2 喷墨打印过程的示意图[18]
Fig.2 Schematic diagram of the inkjet printing[18]
图3 丝网印刷方法的示意图[22]
Fig.3 Schematic diagram of the screen printing[22]
图4 (a)转移印刷[23]、(b)凹版印刷[24]方法的示意图
Fig.4 (a) Transfer printing[23],(b) gravure printing[24]
表1 比较不同印刷方法的特征[28]
Table 1 Comparison of the features of different printing methods[28]
图5 (a)耗尽型和(b)增强性反相器电路示意图[31]
Fig.5 (a) Pseudo-D inverter,(b) Pseudo-E inverter[31]
图6 (a)阵列中的十五个反相器的静态输入-输出特性曲线。(b)电压反转点(VTrip,蓝色实心圆)、信号增益(红色实心三角形)相对于VDD的函数[35]
Fig.6 (a) Static input-output characteristics of fifteen inverters in a fabricated array.(b) Plotted are the trip voltage(VTrip, blue solid circles) and small-signal gain(red solid triangles), as a function of VDD[35]
图7 (a)传统NAND和3D NAND的电路示意图。(b)3D NAND的直流VOUT-VIN特性。(c)通过使用12×8 3D NAND阵列(比例尺为4 mm)实现大规模柔性逻辑电路[36]
Fig.7 (a) Schematic circuits of a conventional NAND gate and a proposed 3D NAND gate.(b) DC VOUT-VIN characteristics of a 3D NAND gate.(c)A large-scale flexible logic circuitry implemented by using a 12×8 3D NAND gate array(scale bar is 4mm)[36]
图8 各种印刷技术制造的印刷电子产品的晶体管密度趋势[36]
Fig.8 Transistor density trend of printed electronics fabricated by various printing techniques[36]
图9 全印刷五级环形振荡器,在10 V dc时,其振荡频率为(a)0.7,(b)12.2和(c)60 Hz,在12 V dc时振荡频率为(d)67.4 Hz[50]
Fig.9 All-printed five-stage ring oscillators with the oscillated frequency of(a) 0.7,(b) 12.2, and(c) 60 Hz at 10 V dc, and(d) 67.4 Hz at 12 V dc [50]
图10 (a)D触发器(DFF)电路横截面图。(b)CMOS器件的光学照片,包括六个DFF电路和两个选择器电路。p型和n型晶体都在虚线包围的区域中生长。(c)在氧化铝上制造的DFF电路输入(时钟和数据)和输出(Q和NQ)信号[32]
Fig.10 (a) A diagram showing the cross-section of the D flip-flop(DFF) circuit.(b) A photographic image of the CMOS device, including six DFF circuits and two selector circuits. Both p-type and n-type crystals were grown in the areas surrounded by dotted lines.(c) The input(CLOCK and DATA) and output(Q and NQ) signals of a typical DFF circuit fabricated on aluminum oxide[32]
图11 (a)13.56 MHz的1-bit RF标签的电路原理图[50],(b)RFID标签的框图[59],(c)13.56 MHz RFID标签和PWM编码方案的框图,(d)固定在柔性基底上的RFID标签的照片[60]
Fig.11 (a) Schematic circuit diagram for 13.56-MHz-operated 1-bit RF tag[50],(b) Block diagram of hybrid RFID tag[59],(c) Block diagram of the 13.56-MHz RFID tag and PWM coding scheme,(d)Photo of the RFID tag foil bonded to flexible flat cables[60]
图12 在机器人(a)、(b)或假肢(c)的三维表面覆盖上大量触摸式传感器的需求成为发展柔性且贴合的电子皮肤的关键驱动,(d)电子皮肤现在被用于开发带有可监测健康状况的传感器的可穿戴贴片(或“第二皮肤”)[63]
Fig.12 The need to cover 3-D surface of(a) and(b) robot’s body and(c) prosthetic limbs with a large number of touch sensors has been a key driver for application for flexible and conformable e-skin.(d) E-skin is now being used to develop wearable patches(or “second skin”) with sensors for health monitoring[63]
图13 (a) 2 μm厚度的器件,具有超柔韧性,可以像纸一样弄皱。比例尺:1 cm,(b) 紧密贴合人体上颌模型的触觉传感器。比例尺:1 cm [66]。(c)模型手的图像和电路原理图,指尖上的DiTact传感器通过可拉伸的银纳米线连接[67]。(d)交变磁场介导的具有生物电磁热效应的液态金属电子皮肤同时进行多部位肿瘤治疗中的生物医学应用的介绍[67]
Fig.13 (a) At only 2 μm thickness, our devices are ultraflexible and can be crumpled like a sheet of paper. Scale bar, 1 cm.(b) Tactile sensor sheet tightly conforming to a model of the human upper jaw. Scale bar, 1 cm. [66](c) Image and circuit schematic of a model hand with DiTact sensors on the fingertips connected with stretchable interconnects.[67](d) Introduction to the biomedical application of AMF-mediated LM e-skin with a bioelectromagnetic thermal effect to spatiotemporally control wireless multisite tumor treatment[67]
图14 (a)由印刷的OTFT驱动背板的AMOLED面板的图像[68]。(b)OLED的结构和亮度随施加电压变化而变化的图像[69]。(c)6.6英寸全彩QD-OLED显示器的照片[70]
Fig.14 (a)Images of AMOLED panel driven by the printed OTFT-backplane[68].(b)The structure of the OLEDs and the luminance according to the applied voltage[69].(c) A physical photo of a full-color QD-OLED display with a size of 6.6 inches[70]
[1]
Xu Y, Liu C, Khim D, Noh Y Y. Phys. Chem. Chem. Phys., 2015, 17(40):26553.
[2]
Zhu B W, Gong S, Lin F G, Wang Y, Ling Y Z, An T C, Cheng W L. Adv. Electron. Mater., 2019, 5(1):1800509.
[3]
Bucella S G, Luzio A, Gann E, Thomsen L, McNeill C R, Pace G, Perinot A, Chen Z H, Facchetti A, Caironi M. Nat. Commun., 2015, 6:8394.
[4]
Lin Z Y, Liu Y, Halim U, Ding M N, Liu Y Y, Wang Y L, Jia C C, Chen P, Duan X D, Wang C, Song F, Li M F, Wan C Z, Huang Y, Duan X F. Nature, 2018, 562(7726):254.
[5]
Yu Y, Xiao X, Zhang Y K, Li K, Yan C, Wei X L, Chen L N, Zhen H Y, Zhou H, Zhang S D, Zheng Z J. Adv. Mater., 2016, 28(24):4926.
[6]
Wang D R, Zhang Y K, Lu X, Ma Z J, Xie C, Zheng Z J. Chem. Soc. Rev., 2018, 47(12):4611.
[7]
Lee T Y, Choi T M, Shim T S, Frijns R A M, Kim S H. Lab a Chip, 2016, 16(18):3415.
[8]
Kim S H, Hong K, Xie W, Lee K H, Zhang S P, Lodge T P, Frisbie C D. Adv. Mater., 2013, 25(13):1822.
[9]
Zi W, Jin Z W, Liu S Z, Xu B M. J. Energy Chem., 2018, 27(4):971.
[10]
Jayesh S, Elias J. Int. J. Simul. Multidisci. Des. Optim., 2019, 10:A11.
[11]
Kim D H, Lu N, Ma R, Kim Y S, Kim R H, Wang S, Wu J, Won S M, Tao H, Islam A, Yu K J. Science, 2011, 333:838.
[12]
Sirringhaus H, Kawase T, Friend R H, Shimoda T, Inbasekaran M, Wu W, Woo E P. Science, 2000, 290(5499):2123.
[13]
Sele C W, von Werne T, Friend R H, Sirringhaus H. Adv. Mater., 2005, 17(8):997.
[14]
Wang C L, Dong H L, Jiang L, Hu W P. Chem. Soc. Rev., 2018, 47(2):422.
[15]
Fu B B, Wang C, Sun Y T, Yao J R, Wang Y, Ge F Y, Yang F X, Liu Z Y, Dang Y F, Zhang X T, Shao X F, Li R J, Hu W P. Adv. Mater., 2019, 31(35):1970251.
[16]
Wang S M, Yao S S, Lin J S, Xia G D. Ceram. Int., 2019, 45(8):9829.
[17]
Ante F, Kälblein D, Zaki T, Zschieschang U, Takimiya K, Ikeda M, Sekitani T, Someya T, Burghartz J N, Kern K, Klauk H. Small, 2012, 8(1):73.
[18]
Kang B, Lee W H, Cho K. ACS Appl. Mater. Interfaces, 2013, 5(7):2302.
[19]
Duineveld P C. J. Fluid Mech., 2003, 477:175.
[20]
Lim J, Lee W, Lee H, Lee J, Park Y, Cho K. Adv. Funct. Mater., 2008, 18(2):229.
[21]
Fukuda K, Takeda Y, Mizukami M, Kumaki D, Tokito S. Sci. Rep., 2014, 4:3947.
[22]
Duan S M, Gao X, Wang Y, Yang F X, Chen M X, Zhang X T, Ren X C, Hu W P. Adv. Mater., 2019, 31(16):1807975.
[23]
Carlson A, Bowen A M, Huang Y G, Nuzzo R G, Rogers J A. Adv. Mater., 2012, 24(39):5284.
[24]
Sung D, de la Fuente Vornbrock A, Subramanian V. IEEE Trans. Comp. Packag. Technol., 2010, 33(1):105.
[25]
Meitl M A, Zhu Z T, Kumar V, Lee K J, Feng X, Huang Y Y, Adesida I, Nuzzo R G, Rogers J A. Nat. Mater., 2006, 5(1):33.
[26]
de la Fuente Vornbrock A, Sung D, Kang H, Kitsomboonloha R, Subramanian V. Org. Electron., 2010, 11(12):2037.
[27]
Feng X, Meitl M A, Bowen A M, Huang Y G, Nuzzo R G, Rogers J A. Langmuir, 2007, 23(25):12555.
[28]
Fukuda K, Someya T. Adv. Mater., 2017, 29(25):1602736.
[29]
Khim D, Luzio A, Bonacchini G E, Pace G, Lee M J, Noh Y Y, Caironi M. Adv. Mater., 2018, 30(20):1705463.
[30]
Takeda Y, Hayasaka K, Shiwaku R, Yokosawa K, Shiba T, Mamada M, Kumaki D, Fukuda K, Tokito S. Sci. Rep., 2016, 6:25714.
[31]
Shao L L, Chu T Y, Tao Y, Cheng K T. 2018 International Flexible Electronics Technology Conference(IFETC). IEEE, 2018, 8584012.
[32]
Yamamura A, Matsui H, Uno M, Isahaya N, Tanaka Y, Kudo M, Ito M, Mitsui C, Okamoto T, Takeya J. Adv. Electron. Mater., 2017, 3(7):1600456.
[33]
Kjellander B K C, Smaal W T T, Myny K, Genoe J, Dehaene W, Heremans P, Gelinck G H. Org. Electron., 2013, 14(3):768.
[34]
Dell’Erba G, Luzio A, Natali D, Kim J, Khim D, Kim D Y, Noh Y Y, Caironi M. Appl. Phys. Lett., 2014, 104(15):153303.
[35]
Shiwaku R, Takeda Y, Fukuda T, Fukuda K, Matsui H, Kumaki D, Tokito S. Sci. Rep., 2016, 6:34723.
[36]
Kwon J, Takeda Y, Shiwaku R, Tokito S, Cho K, Jung S. Nat. Commun., 2019, 10:54.
[37]
Almansouri A S, Ouda M H, Salama K N. IEEE Trans. Microwave Theory Techn., 2018, 66(5):2409.
[38]
Tokito S. 2018 International Flexible Electronics Technology Conference(IFETC). IEEE, 2018, 8583876.
[39]
Bebiche S, Bouhadda I, Mohammed-Brahim T, Coulon N, Bergamini J F, Poriel C, Jacques E. Solid-State Electron., 2017, 130:49.
[40]
Klauk H, Zschieschang U, Pflaum J, Halik M. Nature, 2007, 445(7129):745.
[41]
Cho S I, Mizukami M. J. Korea Inst. Electron. Commun. Sci., 2019, 14:87.
[42]
Elsobky M, Elattar M, Alavi G, Letzkus F, Richter H, Zschieschang U, Strecker M, Klauk H, Burghartz J N. Org. Electron., 2017, 50:491.
[43]
Hayasaka K, Matsui H, Takeda Y, Shiwaku R, Tanaka Y, Shiba T, Kumaki D, Tokito S. Adv. Electron. Mater., 2017, 3(9):1700208.
[44]
Chartier I, Jacob S, Charbonneau M, Aliane A, Plihon A, Coppard R, Gwoziecki R, Verilhac J M, Serbutoviez C, Dhez O, Cantatore E, Domingues dos Santos F. 2014 44th European Solid State Device Research Conference(ESSDERC). IEEE, 2014, 6948795.
[45]
Myny K, van Veenendaal E, Gelinck G H, Genoe J, Dehaene W, Heremans P. 2011 IEEE International Solid-State Circuits Conference. IEEE, 2011, 5746337.
[46]
Zschieschang U, Kang M J, Takimiya K, Sekitani T, Someya T, Canzler T W, Werner A, Blochwitz-Nimoth J, Klauk H. J. Mater. Chem., 2012, 22(10):4273.
[47]
Ji D Y, Jiang L, Dong H L, Meng Q, Zhen Y G, Hu W P. J. Mater. Chem. C, 2014, 2(21):4142.
[48]
Ogier S D, Matsui H, Feng L R, Simms M, Mashayekhi M, Carrabina J, TerÉs L, Tokito S. Org. Electron., 2018, 54:40.
[49]
Janneck R, Nowack T S, de Roose F, Ali H, Dehaene W, Heremans P, Genoe J, Rolin C. Org. Electron., 2019, 67:64.
[50]
Jung M, Kim J, Noh J, Lim N, Lim C, Lee G, Kim J, Kang H, Jung K, Leonard A D, Tour J M, Cho G. IEEE Trans. Electron Devices, 2010, 57(3):571.
[51]
Takeda Y, Yoshimura Y, Adib F A E B, Kumaki D, Fukuda K, Tokito S. Jpn. J. Appl. Phys., 2015, 54(4S):04DK03.
[52]
De Ruiter G, Motiei L, Choudhury J, Oded N, Van der Boom M. Angewandte Chemie Int. Ed., 2010, 49(28):4780.
[53]
Uno M, Kanaoka Y, Cha B S, Isahaya N, Sakai M, Matsui H, Mitsui C, Okamoto T, Takeya J, Kato T, Katayama M, Usami Y, Yamakami T. Adv. Electron. Mater., 2015, 1(12):1500178.
[54]
Myny K. Nat. Electron., 2018, 1(1):30.
[55]
Siegel A C, Phillips S T, Dickey M D, Lu N S, Suo Z G, Whitesides G M. Adv. Funct. Mater., 2010, 20(1):28.
[56]
Yamamura A, Watanabe S, Uno M, Mitani M, Mitsui C, Tsurumi J, Isahaya N, Kanaoka Y, Okamoto T, Takeya J. Sci. Adv., 2018, 4(2):eaao5758.
[57]
Myny K, Steudel S, Vicca P, Furthner F, van der Putten B, Tripathi A K, Gelinck G H, Genoe J, Dehaene W, Heremans P. Org. Electron., 2010, 11:1176.
[58]
Myny K, Steudel S, Vicca P, Beenhakkers M J, van Aerle N A J M, Gelinck G H, Genoe J, Dehaene W, Heremans P. Solid-State Electron., 2009, 53(12):1220.
[59]
Myny K, RockelÉ, M, Chasin A, Pham D V, Steiger J, Botnaras S, Weber D, Herold B, Ficker J, Van Der Putten B, Gelinck G H. IEEE Trans. Electron Devices, 2014, 61:2387.
[60]
Fiore V, Battiato P, Abdinia S, Jacobs S, Chartier I, Coppard R, Klink G, Cantatore E, Ragonese E, Palmisano G. IEEE Trans. Circuits Syst. I: Regul. Pap., 2015, 62(6):1668.
[61]
Dahiya R S, Mittendorfer P, Valle M, Cheng G, Lumelsky V J. IEEE Sensor J., 2013, 13(11):4121.
[62]
Núñez C G, Navaraj W T, Polat E O, Dahiya R. Adv. Funct. Mater., 2017, 27(18):1606287.
[63]
Dahiya R. Proc. IEEE, 2019, 107(2):247.
[64]
Chortos A, Liu J, Bao Z N. Nat. Mater., 2016, 15(9):937.
[65]
Kaltenbrunner M, Sekitani T, Reeder J, Yokota T, Kuribara K, Tokuhara T, Drack M, Schwödiauer R, Graz I, Bauer-Gogonea S, Bauer S, Someya T. Nature, 2013, 499(7459):458.
[66]
Tee B C K, Chortos A, Berndt A, Nguyen A K, Tom A, McGuire A, Lin Z C, Tien K, Bae W G, Wang H, Mei P, Chou H H, Cui B, Deisseroth K, Ng T N, Bao Z. Science, 2015, 350(6258):313.
[67]
Wang X L, Fan L L, Zhang J, Sun X Y, Chang H, Yuan B, Guo R, Duan M H, Liu J. Adv. Funct. Mater., 2019, 29(51):1907063.
[68]
Ryu G S, Kim J S, Jeong S H, Song C K. Org. Electron., 2013, 14(4):1218.
[69]
Kim J S, Song C K. Org. Electron., 2016,30∶45.
[70]
Hu Z P, Yin Y M, Ali M U, Peng W X, Zhang S J, Li D Z, Zou T Y, Li Y Y, Jiao S B, Chen S J, Lee C Y, Meng H, Zhou H. Nanoscale, 2020, 12(3):2103.
[1] 崔淑媛, 刘军, 吴伟. 金属纳米颗粒导电墨水的制备及其在印刷电子方面的应用[J]. 化学进展, 2015, 27(10): 1509-1522.
阅读次数
全文


摘要

印刷有机数字电路及应用