English
新闻公告
More
化学进展 2015, Vol. 27 Issue (10): 1509-1522 DOI: 10.7536/PC150416 前一篇   

• 综述与评论 •

金属纳米颗粒导电墨水的制备及其在印刷电子方面的应用

崔淑媛1, 刘军1,2, 吴伟1,2,3*   

  1. 1. 武汉大学印刷与包装系可印刷功能纳米材料与印刷电子实验室 武汉 430072;
    2. 武汉大学物理科学与技术学院人工微结构教育部重点实验室 武汉 430072;
    3. 香港城市大学物理与材料科学系 香港
  • 收稿日期:2015-04-01 修回日期:2015-05-01 出版日期:2015-10-15 发布日期:2015-09-10
  • 通讯作者: 吴伟 E-mail:weiwu@whu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51201115,51171132),中国博士后基金项目(No.2014M550406),香江学者计划,湖北省自然科学基金(No.2014CFB261),中央高校专项研究经费和武汉大学资助

Preparation of Metal Nanoparticles-Based Conductive Inks and Their Applications in Printed Electronics

Cui Shuyuan1, Liu Jun1,2, Wu Wei1,2,3*   

  1. 1. Laboratory of Printable Functional Nanomaterials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan 430072;
    2. Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China;
    3. Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China
  • Received:2015-04-01 Revised:2015-05-01 Online:2015-10-15 Published:2015-09-10
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51201115, 51171132), the China Postdoctoral Science Foundation (No.2014M550406), the Hong Kong Scholars Program, the Hubei Provincial Natural Science Foundation (No.2014CFB261), the Fundamental Research Funds for the Central Universities and Wuhan University.
发展下一代柔性、低价和环境友好的印刷电子技术已取得大量的研究进展。印刷电子是基于印刷原理的电子制备技术,主要是将一些液体分散性好的或可溶性材料进行印刷图案化从而实现电子元器件的制备。印刷电子学涉及大量的基础学科问题,包括材料、设备、工艺与应用多方面的共性技术,但其关键技术之一在于制备环保、低成本的新型导电墨水。结合印刷电子基础与应用研究的发展现状,本文主要对金属纳米颗粒的合成及其导电墨水的制备与相关应用的最新研究进展进行了综述和讨论,并对其在传感器、薄膜晶体管(TFT)、太阳能电池及RFID等方面的最新应用进展进行了概述。
Enormous efforts have been made towards the next generation of flexible, low-cost, environmental friendly printed electronics. Printed electronics are being explored for the manufacture of large-scale and flexible electronic devices by the patterned application of printable materials. They involve a large number of frontier scientific problems, including many generic technologies in materials, devices, manufacturing process and applications. First of all, preparation of environmental friendly and low-cost conductive ink plays a key role in the development of printed electronics. Combining with the recent progress of printed electronics, this review focuses on the synthesis of metal nanoparticles, preparation of metal nanoparticles-based conductive inks and their applications. The classifications, stabilization of printable metal nanoparticles, preparation method of conductive inks and sintering process, and their progresses in sensors, thin-film transistors, solar cells, and RFID are also briefly reviewed.

Contents
1 Introduction
2 Preparation of printable metal nanoparticles
2.1 Classification of metal nanoparticles
2.2 Synthesis of metal nanoparticles
2.3 Stabilization of metal nanoparticles
3 Preparation of metal nanoparticles-based conductive inks
4 Post-printing treatment and resistivity
4.1 Electrical resistivity
4.2 Sintering of printed conductive patterns
5 Applications
5.1 Transparent electrodes
5.2 Light emitting devices
5.3 Thin film transistors
5.4 Solar cells
5.5 Sensors
5.6 RFID tags
6 Conclusions

中图分类号: 

()
[1] Kim M G, Kanatzidis M G, Facchetti A, Marks T J. Nat. Mater., 2011, 10 (5): 382.
[2] Kim S H, Hong K, Xie W, Lee K H, Zhang S, Lodge T P, Frisbie C D. Adv. Mater., 2013, 25 (13): 1822.
[3] Wu W, Yang S, Zhang S, Zhang H, Jiang C. J. Colloid Interface Sci., 2014, 427: 15.
[4] Varela F, Armendáriz E, Wolluschek C. Chem. Eng. Process., 2011, 50 (5/6): 589.
[5] Kamyshny A, Steinke J, Magdassi S. Open Appl. Phys. J., 2011, 4: 19.
[6] Duan S K, Niu Q L, Wei J F, He J B, Yin Y A, Zhang Y. Phys. Chem. Chem. Phys., 2015, 17 (12): 8106.
[7] Sanchez-Romaguera V, Wünscher S, Turki B M, Abbel R, Barbosa S, Tate D J, Oyeka D, Batchelor J C, Parker E A, Schubert U S. J. Mater. Chem. C, 2015, 3: 2132.
[8] Nelson S F, Ellinger C R, Levy D H. ACS Appl. Mater. Interfaces, 2015,7 (4): 2754.
[9] Guo F, Li N, Radmilovi Dc' V V, Radmilovi Dc' V R, Turbiez M, Spiecker E, Forberich K, Brabec C J. Energy Environ. Sci., 2015, DOI: 10.1039/C5EE00184F.
[10] Arduini F, Zanardi C, Cinti S, Terzi F, Moscone D, Palleschi G, Seeber R. Sens. Actuators, B, 2015, 212: 536.
[11] Sirringhaus H, Kawase T, Friend R, Shimoda T, Inbasekaran M, Wu W, Woo E. Science, 2000, 290 (5499): 2123.
[12] Jahn S F, Blaudeck T, Baumann R R, Jakob A, Ecorchard P, Rüffer T, Lang H, Schmidt P. Chem. Mater., 2010, 22 (10): 3067.
[13] Liu L, Wan X, Sun L, Yang S, Dai Z, Tian Q, Lei M, Xiao X, Jiang C, Wu W. RSC Adv., 2015, 5 (13): 9783.
[14] Moisala A, Nasibulin A G, Kauppinen E I. J. Phys. C, 2003, 15 (42): S3011.
[15] Lee Y, Choi J R, Lee K J, Stott N E, Kim D. Nanotechnology, 2008, 19 (41): 415604.
[16] Kosmala A, Wright R, Zhang Q, Kirby P. Mater. Chem. Phys., 2011, 129 (3): 1075.
[17] Kamyshny A, Magdassi S. Small, 2014, 10 (17): 3515.
[18] Jung I, Jo Y H, Kim I, Lee H M. J. Electron. Mater., 2015, 41 (1): 155.
[19] Jeong S, Lee S H, Jo Y, Lee S S, Seo Y H, Ahn B W, Kim G, Jang G E, Park J U, Ryu B H. J. Mater. Chem. C, 2013, 1 (15): 2704.
[20] Trinh D C, Dang T M D, Huynh K K, Fribourg-Blanc E, Dang M C. Adv. Nat. Sci., 2015, 6 (2): 025018.
[21] Jing J J, Xie J, Chen G Y, Li W H, Zhang M M. J. Exp. Nanosci., 2015, DOI:10.1080/17458080.2015.1012751.
[22] 辛智青(Xin Z Q), 王思(Wang S), 李风煜(Li F Y), 张兴业(Zhang X Y), 张志良(Zhang Z L), 宋延林(Song Y L). 中国科学: 化学(Science China: Chemistry), 2013, 6: 677.
[23] Lu A H, Salabas E e L, Schüth F. Angew. Chem. Int. Ed., 2007, 46 (8): 1222.
[24] Semaltianos N, Hendry E, Chang H, Wears M. Laser Phys. Lett., 2015, 12 (4): 046201.
[25] Kim C K, Lee G J, Lee M K, Rhee C K. Powder Technol., 2014, 263: 1.
[26] Li N, Zhao P, Astruc D. Angew. Chem. Int. Ed., 2014, 53 (7): 1756.
[27] Yusof N S M, Ashokkumar M. Chem. Phys. Chem., 2015, 16 (4): 775.
[28] Tamburri E, Angjellari M, Tomellini M, Gay S, Reina G, Lavecchia T, Barbini P, Pasquali M, Orlanducci S. Electrochim. Acta., 2015, 157: 115.
[29] Yun J, Cho K, Park B, Kang H C, Ju B K, Kim S. Jap. J. Appl. Phys., 2008, 47 (6S): 5070.
[30] Jensen G C, Krause C E, Sotzing G A, Rusling J F. Phys. Chem. Chem. Phys., 2011, 13 (11): 4888.
[31] Huang Q, Shen W, Xu Q, Tan R, Song W. Mater. Chem. Phys., 2014, 147 (3): 550.
[32] Ko S H, Chung J, Hotz N, Nam K H, Grigoropoulos C P. J. Micromechanic. Microeng., 2010, 20 (12): 125010.
[33] Grouchko M, Kamyshny A, Magdassi S. J. Mater. Chem., 2009, 19 (19): 3057.
[34] Li D, Sutton D, Burgess A, Graham D, Calvert P D. J. Mater. Chem., 2009, 19 (22): 3719.
[35] Yu H, Li L, Zhang Y. Scripta Mater., 2012, 66 (11): 931.
[36] Park S, Vosguerichian M, Bao Z. Nanoscale, 2013, 5 (5): 1727.
[37] Vaseem M, Lee K M, Hong A R, Hahn Y B. ACS Appl. Mater. Interfaces, 2012, 4 (6): 3300.
[38] Shen W, Zhang X, Huang Q, Xu Q, Song W. Nanoscale, 2014, 6 (3): 1622.
[39] Jeong S, Song H C, Lee W W, Lee S S, Choi Y, Son W, Kim E D, Paik C H, Oh S H, Ryu B H. Langmuir, 2011, 27 (6): 3144.
[40] Ahn B Y, Walker S B, Slimmer S C, Russo A, Gupta A, Kranz S, Duoss E B, Malkowski T F, Lewis J A. J. Visua. Exp., 2011, (58): 3189.
[41] Jeong S, Woo K, Kim D, Lim S, Kim J S, Shin H, Xia Y, Moon J. Adv. Funct. Mater., 2008, 18 (5): 679.
[42] Woo Y J, Park K H, Park O O, Wang D H. Org. Electron., 2015, 16: 118.
[43] Magdassi S, Grouchko M, Kamyshny A. Mater., 2010, 3 (9): 4626.
[44] Effenberger F B, Sulca M A, Machini M T, Couto R A, Kiyohara P K, Machado G, Rossi L M. J. Nanopart. Res., 2014, 16 (11): 1.
[45] Farraj Y, Grouchko M, Magdassi S. Chem. Commun., 2015, 51, 1587.
[46] Glover R D, Miller J M, Hutchison J E. ACS Nano, 2011, 5 (11): 8950.
[47] Dang T M D, Le T T T, Fribourg-Blanc E, Dang M C. Adv. Nat. Sci., 2011, 2 (2): 025004.
[48] Malviya K D, Chattopadhyay K. J. Mater. Sci., 2015, 50 (2): 980.
[49] Ghosh Chaudhuri R, Paria S. Chem. Rev., 2011, 112 (4): 2373.
[50] Bao Y, Calderon H, Krishnan K M. J. Phys. Chem. C, 2007, 111 (5): 1941.
[51] Wang L, Clavero C, Huba Z, Carroll K J, Carpenter E E, Gu D, Lukaszew R A. Nano Lett., 2011, 11 (3): 1237.
[52] Zhao Y, Yang X, Tian J, Wang F, Zhan L. Int. J. Hydrogen Energy, 2010, 35 (8): 3249.
[53] Chen D, Li J, Shi C, Du X, Zhao N, Sheng J, Liu S. Chem. Mater., 2007, 19 (14): 3399.
[54] Kamyshny A, Ben-Moshe M, Aviezer S, Magdassi S. Macromol. Rapid Commun., 2005, 26 (4): 281.
[55] Park B K, Kim D, Jeong S, Moon J, Kim J S. Thin Solid Films, 2007, 515 (19): 7706.
[56] Muzikansky A, Nanikashvili P, Grinblat J, Zitoun D. J. Phys. Chem. C, 2013, 117 (6): 3093.
[57] Joo S J, Park S H, Moon C J, Kim H S. ACS Appl. Mater. Interfaces, 2015, 7 (10): 5674.
[58] Chen S P, Chiu H L, Wang P H, Liao Y C. ECS J. Solid State Sci. Technol., 2015, 4 (4): P3026.
[59] Chung W H, Hwang H J, Kim H S. Thin Solid Films, 2015, 580: 61.
[60] Zhang Z, Zhang X, Xin Z, Deng M, Wen Y, Song Y. Nanotechnology, 2011, 22 (42): 425601.
[61] Lewis J A, Ahn B Y. Nature, 2015, 518 (7537): 42.
[62] Kullmann C, Schirmer N C, Lee M T, Ko S H, Hotz N, Grigoropoulos C P, Poulikakos D. J. Micromechanics Microeng., 2012, 22 (5): 055022.
[63] Kamyshny A, Magdassi S. Small, 2014, 10 (17): 3515.
[64] Layani M, Cooperstein I, Magdassi S. J. Mater. Chem. C, 2013, 1 (19): 3244.
[65] Perelaer J, de Gans B J, Schubert U S. Adv. Mater., 2006, 18 (16): 2101.
[66] Jo Y H, Jung I, Choi C S, Kim I, Lee H M. Nanotechnology, 2011, 22 (22): 225701.
[67] Lee H, Yang M. Appl. Phys. A, 2015: 1.
[68] 吴美兰(Wu M L),周雪琴(Zhou X Q),李巍(Li W),莫黎昕(Mo L X),刘东志(Liu D Z). 化工进展(Chemical Industry and Engineering Progress), 2012, 31 (8): 1806.
[69] Kim H S, Dhage S R, Shim D E, Hahn H T. Appl. Phys. A, 2009, 97 (4): 791.
[70] Kim D, Jeong S, Park B K, Moon J. Appl. Phys. Lett., 2006, 89 (26): 264101.
[71] Lee H H, Chou K S, Huang K C. Nanotechnology, 2005, 16 (10): 2436.
[72] Toshima N, Yonezawa T. New J. Chem., 1998, 22 (11): 1179.
[73] Perelaer J, Smith P J, Mager D, Soltman D, Volkman S K, Subramanian V, Korvink J G, Schubert U S. J. Mater. Chem., 2010, 20 (39): 8446.
[74] Woo K, Bae C, Jeong Y, Kim D, Moon J. J. Mater. Chem., 2010, 20 (19): 3877.
[75] Joo M, Lee B, Jeong S, Lee M. Thin Solid Films, 2012, 520 (7): 2878.
[76] Moon Y J, Kang H, Kang K, Moon S J. J. Electron. Mater., 2015, 44 (4): 1192.
[77] Denneulin A, Blayo A, Neuman C, Bras J. J. Nanopart. Res., 2011, 13 (9): 3815.
[78] Hösel M, Krebs F C. J. Mater. Chem., 2012, 22 (31): 15683.
[79] Ko S H, Pan H, Grigoropoulos C P, Luscombe C K, Fréchet J M, Poulikakos D. Nanotechnology, 2007, 18 (34): 345202.
[80] Choi J H, Ryu K, Park K, Moon S J. Int. J. Heat Mass Transfer, 2015, 85: 904.
[81] Tobjörk D, Aarnio H, Pulkkinen P, Bollström R, Määttänen A, Ihalainen P, Mäkelä T, Peltonen J, Toivakka M, Tenhu H, Österbacka R. Thin Solid Films, 2012, 520 (7): 2949.
[82] Galagan Y, Coenen E W C, Abbel R, van Lammeren T J, Sabik S, Barink M, Meinders E R, Andriessen R, Blom P W M. Org. Electron., 2013, 14 (1): 38.
[83] Ko S H, Pan H, Grigoropoulos C P, Luscombe C K, Fréchet J M, Poulikakos D. Appl. Phys. Lett., 2007, 90 (14): 141103.
[84] Hong S, Yeo J, Kim G, Kim D, Lee H, Kwon J, Lee H, Lee P, Ko S H. ACS Nano, 2013, 7 (6): 5024.
[85] Perelaer J, Schubert U S. J. Mater. Res., 2013, 28 (04): 564.
[86] Perelaer J, Jani R, Grouchko M, Kamyshny A, Magdassi S, Schubert U S. Adv. Mater., 2012, 24 (29): 3993.
[87] Kim K S, Park B G, Jung K H, Kim J W, Jeong M Y, Jung S B. J. Nanosci. Nanotechnol., 2015, 15 (3): 2333.
[88] Perelaer J, Abbel R, Wünscher S, Jani R, van Lammeren T, Schubert U S. Adv. Mater., 2012, 24 (19): 2620.
[89] Perelaer J, Klokkenburg M, Hendriks C E, Schubert U S. Adv. Mater., 2009, 21 (47): 4830.
[90] Chaim R. Mater. Sci. Eng. A, 2007, 443 (1): 25.
[91] Reinhold I, Hendriks C E, Eckardt R, Kranenburg J M, Perelaer J, Baumann R R, Schubert U S. J. Mater. Chem., 2009, 19 (21): 3384.
[92] Wünscher S, Stumpf S, Teichler A, Pabst O, Perelaer J, Beckert E, Schubert U S. J. Mater. Chem., 2012, 22 (47): 24569.
[93] Hummelgård M, Zhang R, Nilsson H E, Olin H. PLoS One, 2011, 6 (2): e17209.
[94] Allen M, Alastalo A, Suhonen M, Mattila T, Leppaniemi J, Seppa H. IEEE T. Microwave Theory Tech., 2011, 59 (5): 1419.
[95] Allen M L, Aronniemi M, Mattila T, Alastalo A, Ojanperä K, Suhonen M, Seppä H. Nanotechnology, 2008, 19 (17): 175201.
[96] Lee H, Kim D, Lee I, Moon Y J, Hwang J Y, Park K, Moon S J. Jap. J. Appl. Phys., 2014, 53 (5S3): 05HC07.
[97] Cooperstein I, Layani M, Magdassi S. J. Mater. Chem. C, 2015, 3: 2040.
[98] Tang Y, He W, Wang S, Tao Z, Cheng L. Crystengcomm., 2014, 16 (21): 4431.
[99] Magdassi S, Grouchko M, Berezin O, Kamyshny A. ACS Nano, 2010, 4 (4): 1943.
[100] Tang Y, He W, Zhou G, Wang S, Yang X, Tao Z, Zhou J. Nanotechnology, 2012, 23 (35): 355304.
[101] Layani M, Grouchko M, Shemesh S, Magdassi S. J. Mater. Chem., 2012, 22 (29): 14349.
[102] Grouchko M, Kamyshny A, Mihailescu C F, Anghel D F, Magdassi S. ACS Nano, 2011, 5 (4): 3354.
[103] Layani M, Magdassi S. J. Mater. Chem., 2011, 21 (39): 15378.
[104] Yang S, Wang C F, Chen S. Angew. Chem., 2011, 123 (16): 3790.
[105] Lu Z, Layani M, Zhao X, Tan L P, Sun T, Fan S, Yan Q, Magdassi S, Hng H H. Small, 2014, 10 (17): 3551.
[106] Hübler A, Trnovec B, Zillger T, Ali M, Wetzold N, Mingebach M, Wagenpfahl A, Deibel C, Dyakonov V. Adv. Energy Mater., 2011, 1 (6): 1018.
[107] Russo A, Ahn B Y, Adams J J, Duoss E B, Bernhard J T, Lewis J A. Adv. Mater., 2011, 23 (30): 3426.
[108] Niu C. MRS Bull., 2011, 36 (10): 766.
[109] Hecht D S, Kaner R B. MRS Bull., 2011, 36 (10): 749.
[110] Kang M G, Guo L J. Adv. Mater., 2007, 19 (10): 1391.
[111] Hu L, Wu H, Cui Y. MRS Bull., 2011, 36 (10): 760.
[112] Saran N, Parikh K, Suh D S, Muñoz E, Kolla H, Manohar S K. J. Am. Chem. Soc., 2004, 126 (14): 4462.
[113] Hwang B, Shin H A, Kim T, Joo Y C, Han S M. Small, 2014,10 (16): 3397.
[114] Repetto D, Giordano M C, Martella C, de Mongeot F B. Appl. Surf. Sci., 2015, 327: 444.
[115] Layani M, Gruchko M, Milo O, Balberg I, Azulay D, Magdassi S. ACS Nano, 2009, 3 (11): 3537.
[116] Park J H, Lee D Y, Seung W, Sun Q, Kim S W, Cho J H. J. Phys. Chem. C, 2015, 119 (14): 7802.
[117] Azoubel S, Shemesh S, Magdassi S. Nanotechnology, 2012, 23 (34): 344003.
[118] Zhang C, Marvinney C E, Xu H Y, Liu W Z, Wang C L, Zhang L X, Wang J N, Ma J G, Liu Y C. Nanoscale, 2015, 7 (3): 1073.
[119] Wu X, Liu L, Deng Z, Nian L, Zhang W, Hu D, Xie Z, Mo Y, Ma Y. Part. Part. Syst. Charact., 2015, DOI: 10.1002/ppsc.201400241.
[120] Song C H, Ok K H, Lee C J, Kim Y, Kwak M G, Han C J, Kim N, Ju B K, Kim J W. Org. Electron., 2015, 17: 208.
[121] Moonen P F, Yakimets I, Huskens J. Adv. Mater., 2012, 24 (41): 5526.
[122] Dasgupta S, Stoesser G, Schweikert N, Hahn R, Dehm S, Kruk R, Hahn H. Adv. Funct. Mater., 2012, 22 (23): 4909.
[123] Gamerith S, Klug A, Scheiber H, Scherf U, Moderegger E, List E J. Adv. Funct. Mater., 2007, 17 (16): 3111.
[124] Tang W, Feng L, Zhao J Q, Cui Q Y, Chen S J,Guo X J. J. Mater. Chem. C, 2014, 2 (11): 1995.
[125] Noguchi Y, Sekitani T, Yokota T, Someya T. Appl. Phys. Lett., 2008, 93 (4): 043303.
[126] Chen P, Fu Y, Aminirad R, Wang C, Zhang J, Wang K, Galatsis K, Zhou C. Nano Lett., 2011, 11 (12): 5301.
[127] Hoppe H, Sariciftci N S. J. Mater. Res., 2004, 19 (07): 1924.
[128] Hecht D S, Hu L, Irvin G. Adv. Mater., 2011, 23 (13): 1482.
[129] Galagan Y, Zimmermann B, Coenen E W, Jørgensen M, Tanenbaum D M, Krebs F C, Gorter H, Sabik S, Slooff L H, Veenstra S C. Adv. Energy Mater., 2012, 2 (1): 103.
[130] 李祥高(Li X G), 吴宪(Wu X), 王世荣(Wang S R). 中国材料进展(Materials China), 2014, 33 (3): 156.
[131] 裴为华(Pei W H), 国冬梅(Guo D M), 耿照新(Geng Z X),陈弘达(Chen H D). 中国材料进展(Materials China), 2014, 33 (3): 172.
[132] Singh M, Haverinen H M, Dhagat P, Jabbour G E. Adv. Mater., 2010, 22 (6): 673.
[133] Saha K, Agasti S S, Kim C, Li X, Rotello V M. Chem. Rev., 2012, 112 (5): 2739.
[134] Hu C, Bai X, Wang Y, Jin W, Zhang X, Hu S. Anal. Chem., 2012, 84 (8): 3745.
[135] Wei W Y, White I M. Analyst, 2013, 138 (4): 1020.
[136] Polavarapu L, Manga K K, Yu K, Ang P K, Cao H D, Balapanuru J, Loh K P, Xu Q H. Nanoscale, 2011, 3 (5): 2268.
[137] Hoppmann E P, Wei W Y, White I M. Methods, 2013, 63 (3): 219.
[138] Dai Z, Xiao X, Wu W, Liao L, Mei F, Yu X, Guo S, Ying J, Ren F, Jiang C. Appl. Phys. Lett., 2014, 105 (21): 211902.
[139] Wu W, Liu L, Dai Z G, Liu J H, Yang S L, Zhou L, Xiao X H, Jiang C Z, Roy V A L. Sci. Rep., 2015, DOI: 10.1038/srep10208.
[140] Dang M C, Nguyen D S, Dang T M D, Tedjini S, Fribourg-Blanc E. Adv. Nat. Sci., 2014, 5 (2): 025012.
[141] Subramanian V, Fréchet J M, Chang P C, Huang D C, Lee J B, Molesa S E, Murphy A R, Redinger D R, Volkman S K. Proc. IEEE, 2005, 93 (7): 1330.
[142] Sanchez-Romaguera V, Wünscher S, Turki B M, Abbel R, Barbosa S, Tate D J, Oyeka D, Batchelor J C, Parker E A, Schubert U S. J. Mater. Chem. C, 2015, 3 (9): 2141.
[143] Wolf F M, Perelaer J, Stumpf S, Bollen D, Kriebel F, Schubert U S. J. Mater. Res., 2013, 28 (9): 1254.
[1] 张丹丹, 吴琪, 曲广波, 史建波, 江桂斌. 单细胞水生生物金属纳米颗粒的定量分析[J]. 化学进展, 2022, 34(11): 2331-2339.
[2] 张静, 张小涛, 任晓辰, 胡文平. 印刷有机数字电路及应用[J]. 化学进展, 2021, 33(3): 490-502.
[3] 焦成鹏, 黄自力, 张海军, 张少伟. 置换反应制备双金属纳米催化剂[J]. 化学进展, 2015, 27(5): 472-481.
[4] 李阳, 牛军峰, 张驰, 王正早, 郑梦源, 商恩香. 水中金属纳米颗粒对细菌的光致毒性机理[J]. 化学进展, 2014, 26(0203): 436-449.
[5] 王金业, 宋晨, 徐景坤, 丁宝全. 利用DNA折纸术构建功能纳米材料[J]. 化学进展, 2012, (10): 1936-1945.
[6] 王立英 蔡灵剑 沈頔 冯永刚 陈萌 钱东金. 金属纳米颗粒制备中的还原剂与修饰剂*[J]. 化学进展, 2010, 22(04): 580-592.