中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (8): 1140-1157 DOI: 10.7536/PC200301 Previous Articles   Next Articles

• Review •

Assembling Effects of Surface Ligands on Metal Nanomaterials

Ruixuan Qin1, Guocheng Deng1, Nanfeng Zheng1,**()   

  1. 1. State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
  • Received: Revised: Online: Published:
  • Contact: Nanfeng Zheng
  • About author:
  • Supported by:
    the National Key R&D Program of China(2017YFA0207304); National Natural Science Foundation of China(21890752); National Natural Science Foundation of China(21731005); National Natural Science Foundation of China(21721001); Fundamental Research Funds for Central Universities(20720180026)
Richhtml ( 55 ) PDF ( 1150 ) Cited
Export

EndNote

Ris

BibTeX

Surface ligands on metal nanomaterials play a crucial role in the controlled synthesis of metal nanoparticles with specific size and morphology. However, the detailed molecular-level structures of surface ligands are difficult to be determined by conventional characterizations, leading to our poor understanding over the effects of surface ligands on the chemical properties of metal nanomaterials. Benefiting from the development of metal nanoclusters and other model nanomaterials, increasing research effort has been devoted to revealing the detailed coordination structure of surface ligands on metal nanomaterials and their catalytic effects. The coordination of organic molecules on the metal surface can not only regulate the electronic structure of the surface metal, but also alter the periodic structure of the surface atoms. Moreover, the assembling of surface organic ligands can create 3D spatial structure on the metal surface for manipulating the interaction strength and configuration of reactants and intermediates with the catalytic surface. The interface created by having organic ligands modify metal surface can also lead to the formation of new catalytic sites for changing the catalytic reaction pathways to improve the catalytic activity and selectivity. The assembling effects of surface ligands on metal nanomaterials make them exhibit advantages of heterogeneous catalysis and homogeneous catalysis.

Contents

1 Introduction

2 Metal nanoclusters as the model system

2.1 Coordination structure of organic ligands

2.2 Ensemble effect of surface ligands

2.3 Nanoclusters as model catalysts

3 Hydrophobicity and hydrophilicity

4 Ensemble effect and steric effect

4.1 Ensemble effect of surface coordination

4.2 Steric effect of surface organic assembly

5 Electronic effect of surface organic ligands

6 Synergistic metal-organic catalytic interfaces

7 Conclusion and outlook

Fig.1 The local coordination bonding structure and arrangement structure of ligands on the surface of metal nanomaterials are important factors determining their surface chemical properties
Fig.2 (a) The total structure of thiolated Au102 nanocluster(left) and the coordination structure(right) of the -SR-Au-SR- “staple” motif on the surface of the cluster[24]. Color: gold, inner Au atoms; dark green, surface + 1 valence Au atoms; yellow, S; gray, C; Red, O. Copyright 2007 American Association for the Advancement of Science.(b) The total structure of thiolated Ag44 nanocluster(left) and the coordination structure of its surface Ag2(SR)5 motif(right)[27]. Color: gold, core Ag atoms; dark green, surface and sub-surface Ag atoms; yellow, S; gray, C. Copyright 2013 Springer Nature
Fig.3 The local coordination structures of different surface ligands on typical ligand-stabilized metal nanoclusters.(a) Thoilates[30];(b~d) Alkynyl ligands[31,32,33,34,35];(e) Monodentate phosphines;(f) Carbon monoxide;(g) Halides
Fig.4 The total structures of metal nanoclusters stabilized by bulky ligands.(a) Cyclohexanethiolate-stabilized Ag206[43]. Copyright 2018 Oxford University Press.(b) 1-adamantanethiolate-stabilized Ag141[44]. Copyright 2017 American Chemical Society
Fig.5 (a) PA ligand on Au34Ag28(PA)34 nanoclusters promotes the hydrolytic oxidation of organosilanes[46]. Copyright 2016 American Chemical Society.(b) Pd3Cl cluster catalyzed Suzuki-Miyaura reaction[47]. Copyright 2017 American Chemical Society.(c) Cu25H10 nanocluster catalyzed ketone hydrogenation[42]. Copyright 2019 American Chemical Society
Fig.6 Polymerization of C2H2 on Pd NS enhanced hydrophobicity and styrene hydrogenation activity[48]. Copyright 2014 American Chemical Society
Fig.7 Volcano-shape relationship between the promotional effect of ILs on Pt NPs for ORR and the alkyl chain length of ILs[49]. Copyright 2018 American Chemical Society
Fig.8 Selectivities of Cu catalyzed CO2RR with different modifiers[52]. Copyright 2019 American Chemical Society
Fig.9 Schematic(a) and TEM images(b, c) of PdAu NPs in zeolite with hydrophobic silicane modification[55]. Copyright 2020 American Association for the Advancement of Science
Fig.10 Schematic of SAM on Pd(111)[57]. Copyright 2010 Springer Nature
Fig.11 Thiols with different structure prefer to occupy different surface site[61]. Copyright 2013 Springer Nature
Fig.12 Schematic of rigid oleylamine layer on Pt3Co NPs manipulate adsorption configuration of cinnamaldehyde[68]. Copyright 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.13 SPhF2 modified Pd4S NS for semihydrogenation of internal alkynes[31]. Copyright 2018 Elsevier Inc
Fig.14 Interaction model of ethyl pyruvate and cinchonidine over Pt surface[73]. Copyright 2004 American Chemical Society
Fig.15 Organic ligands enhance photoluminescence quantum yield of QDs[83]. Copyright 2013 American Chemical Society
Fig.16 Electronic effect of ethylenediamine on Pt NWs for selective hydrogenation of nitrobenzene to N-hydroxylaniline[89].(a) TEM image of Pt NWs,(b) Bader charge analysis of Pt,(c) Schematic of nitrobenzene hydrogenation on Pt NWs. Copyright 2016 Springer Nature
Fig.17 Polymerization of tris(4-vinylphenyl)phosphine in FDU-12. The chelating of phosphine ligands to the encapsulated Pd NPs enhances catalytic activity and selectivity of hydrogenation[90]. Copyright 2018 American Chemical Society
Fig.18 Electronic effect of CO on Au(111) in promoting the adsorption of hydroxyl and electrooxidation of MeOH[97]. Copyright 2011 Springer Nature
Fig.19 Schematic illustration of the interaction between the RDS transition state of CO oxidation and the Pd surface(a) or POF modifiers with different functional group(b, c)[98]. Copyright 2019 Springer Nature
Fig.20 Schematics of adsorption configuration of hydroperoxide intermediates on pure Pd and HHDMA modified Pd surface[101]. Copyright 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.21 Proposed C=O group hydrogenation mechanism of L-proline modified Pt NPs[102]. Copyright 2015 American Chemical Society
Fig.22 (a) Schematic and energies of heterolytic H2 activation process by ethylene glycol ligands on TiO2.(b) Primary KIE in styrene hydrogenation catalyzed by Pd1/TiO2.(c) Benzaldehyde hydrogenation catalyzed by Pd1/TiO2, Pd/C, and H2PdCl4[110]. Copyright 2016 American Association for the Advancement of Science
[1]
Bell A T. Science, 2003,299:1688. https://www.ncbi.nlm.nih.gov/pubmed/12663908

doi: 10.1126/science.1081056 pmid: 12663908
[2]
Hammer B, Norskov J K. Nature, 1995,376:238.
[3]
Hutchings G. Catal., 1985,96:292.
[4]
Haruta M, Kobayashi T, Sano H, Yamada N. Chem. Lett., 1987,16:405.
[5]
Ishida T, Murayama T, Taketoshi A, Haruta M. Chem. Rev., 2020,120:464. https://www.ncbi.nlm.nih.gov/pubmed/31820953

doi: 10.1021/acs.chemrev.9b00551 pmid: 31820953
[6]
Xie C, Niu Z, Kim D, Li M, Yang P. Chem. Rev., 2020,120:1184. https://www.ncbi.nlm.nih.gov/pubmed/32603100

doi: 10.1021/acs.chemrev.0c00101 pmid: 32603100
[7]
Wu Y, Wang D, Li Y. Chem. Soc. Rev., 2014,43:2112. https://www.ncbi.nlm.nih.gov/pubmed/25103915

doi: 10.1039/c4cs00176a pmid: 25103915
[8]
Wu B H, Zheng N F. Nano Today, 2013,8:168. 770f513e-2ad9-458b-abf2-a6cfe16d18f9http://dx.doi.org/10.1016/j.nantod.2013.02.006

doi: 10.1016/j.nantod.2013.02.006
[9]
Yang F, Deng D H, Pan X L, Fu Q, Bao X H. Natl. Sci. Rev., 2015,2:183.
[10]
Serp P, Philippot K. Nanomaterials in Catalysis. John Wiley & Sons, 2012.
[11]
Liu L, Corma A. Chem. Rev., 2018,118:4981. https://www.ncbi.nlm.nih.gov/pubmed/30301355

doi: 10.1021/acs.chemrev.8b00495 pmid: 30301355
[12]
Zhou K, Li Y. Angew. Chem. Int. Ed., 2012,51:602.
[13]
Yin Y, Alivisatos A P. Nature, 2005,437:664. https://www.ncbi.nlm.nih.gov/pubmed/16193041

doi: 10.1038/nature04165 pmid: 16193041
[14]
Rossi L M, Fiorio J L, Garcia M A S, Ferraz C P. Dalton Trans., 2018,47:5889. https://www.ncbi.nlm.nih.gov/pubmed/30480690

doi: 10.1039/c8dt03854f pmid: 30480690
[15]
Chen M, Wu B, Yang J, Zheng N. Adv. Mater., 2012,24:862. https://www.ncbi.nlm.nih.gov/pubmed/22252856

doi: 10.1002/adma.201104145 pmid: 22252856
[16]
Cargnello M, Chen C, Diroll B T, Doan-Nguyen V V, Gorte R J, Murray C B. J. Am. Chem. Soc., 2015,137:6906. https://www.ncbi.nlm.nih.gov/pubmed/26653152

doi: 10.1021/jacs.5b10879 pmid: 26653152
[17]
Schoenbaum C A, Schwartz D K, Medlin J W. Acc. Chem. Res., 2014,47:1438. https://www.ncbi.nlm.nih.gov/pubmed/25350402

doi: 10.1021/ar500112b pmid: 25350402
[18]
Vile G, Almora Barrios N, Mitchell S, Lopez N, Perez Ramirez J. Chem. -Eur. J., 2014,20:5926. https://www.ncbi.nlm.nih.gov/pubmed/25367386

doi: 10.1002/chem.201402873 pmid: 25367386
[19]
Vilé G, Albani D, Almora Barrios N, López N, Pérez Ramírez J. ChemCatChem, 2016,8:21.
[20]
Liu P, Qin R, Fu G, Zheng N. Am. Chem. Soc., 2017,139:2122.
[21]
Whetten R L, Price R C. Science, 2007,318:407. https://www.ncbi.nlm.nih.gov/pubmed/17947573

doi: 10.1126/science.1150176 pmid: 17947573
[22]
Jin R, Zeng C, Zhou M, Chen Y. Chem. Rev., 2016,116:10346. https://www.ncbi.nlm.nih.gov/pubmed/27585252

doi: 10.1021/acs.chemrev.5b00703 pmid: 27585252
[23]
Brust M, Walker M, Bethell D, Schiffrin D J, Whyman R. J. Chem. Soc., Chem. Commun., 1994,801.
[24]
Jadzinsky P D, Calero G, Ackerson C J, Bushnell D A, Kornberg R D. Science, 2007,318:430. https://www.ncbi.nlm.nih.gov/pubmed/17947577

doi: 10.1126/science.1148624 pmid: 17947577
[25]
Heaven M W, Dass A, White P S, Holt K M, Murray R W. Am. Chem. Soc., 2008,130:3754.
[26]
Zhu M, Aikens C M, Hollander F J, Schatz G C, Jin R. J. Am. Chem. Soc., 2008,130:5883. https://www.ncbi.nlm.nih.gov/pubmed/19554716

doi: 10.1021/ja805274u pmid: 19554716
[27]
Yang H, Wang Y, Huang H, Gell L, Lehtovaara L, Malola S, Hakkinen H, Zheng N. Nat. Commun., 2013,4:2422. https://www.ncbi.nlm.nih.gov/pubmed/24352200

doi: 10.1038/ncomms3986 pmid: 24352200
[28]
Desireddy A, Conn B E, Guo J, Yoon B, Barnett R N, Monahan B M, Kirschbaum K, Griffith W P, Whetten R L, Landman U, Bigioni T P. Nature, 2013,501:399. ef4ef951-a5b3-4ba4-b183-073b72d4c1c4http://dx.doi.org/10.1038/nature12523

doi: 10.1038/nature12523
[29]
Yan J, Su H, Yang H, Malola S, Lin S, Hakkinen H, Zheng N. Am. Chem. Soc., 2015,137:11880. https://pubs.acs.org/doi/10.1021/jacs.5b07186

doi: 10.1021/jacs.5b07186
[30]
Yan J, Teo B K, Zheng N. Acc. Chem. Res., 2018,51:3084. https://www.ncbi.nlm.nih.gov/pubmed/30417644

doi: 10.1021/acs.accounts.8b00285 pmid: 30417644
[31]
Zhao X J, Zhou L Y, Zhang W Y, Hu C Y, Dai L, Ren L T, Wu B H, Fu G, Zheng N F. Chem, 2018,4:1080. https://www.ncbi.nlm.nih.gov/pubmed/29629424

doi: 10.1016/j.chempr.2017.10.015 pmid: 29629424
[32]
Qu M, Li H, Xie L H, Yan S T, Li J R, Wang J H, Wei C Y, Wu Y W, Zhang X M. J. Am. Chem. Soc., 2017,139:12346. https://www.ncbi.nlm.nih.gov/pubmed/28837326

doi: 10.1021/jacs.7b05243 pmid: 28837326
[33]
Gupta A K, Orthaber A. Chem. -Eur. J., 2018,24:7536. https://www.ncbi.nlm.nih.gov/pubmed/30381861

doi: 10.1002/chem.201804686 pmid: 30381861
[34]
Wang Y, Su H, Xu C, Li G, Gell L, Lin S, Tang Z, Hakkinen H, Zheng N. J. Am. Chem. Soc., 2015,137:4324. https://www.ncbi.nlm.nih.gov/pubmed/26653152

doi: 10.1021/jacs.5b10879 pmid: 26653152
[35]
Shen H, Mizuta T. Chem. -Eur. J., 2017,23:17885. https://www.ncbi.nlm.nih.gov/pubmed/29135045

doi: 10.1002/chem.201704643 pmid: 29135045
[36]
Yang H, Yan J, Wang Y, Su H, Gell L, Zhao X, Xu C, Teo B K, Häkkinen H, Zheng N. J. Am. Chem. Soc., 2017,139:31. https://www.ncbi.nlm.nih.gov/pubmed/27992210

doi: 10.1021/jacs.6b10053 pmid: 27992210
[37]
Wan X K, Lin Z W, Wang Q M. J. Am. Chem. Soc., 2012,134:14750. https://www.ncbi.nlm.nih.gov/pubmed/22931402

doi: 10.1021/ja307256b pmid: 22931402
[38]
Wan X K, Yuan S F, Lin Z W, Wang Q M. Angew. Chem. Int. Ed., 2014,53:2923.
[39]
Yang H, Yan J, Wang Y, Deng G, Su H, Zhao X, Xu C, Teo B K, Zheng N. J. Am. Chem. Soc., 2017,139:16113. https://www.ncbi.nlm.nih.gov/pubmed/29053274

doi: 10.1021/jacs.7b10448 pmid: 29053274
[40]
Yuan X, Sun C, Li X, Malola S, Teo B K, Hakkinen H, Zheng L S, Zheng N. J. Am. Chem. Soc., 2019,141:11905. https://www.ncbi.nlm.nih.gov/pubmed/31294970

doi: 10.1021/jacs.9b03009 pmid: 31294970
[41]
Dhayal R S, van Zyl W E, Liu C W. Acc. Chem. Res., 2016,49:86. https://www.ncbi.nlm.nih.gov/pubmed/26696469

doi: 10.1021/acs.accounts.5b00375 pmid: 26696469
[42]
Sun C, Mammen N, Kaappa S, Yuan P, Deng G, Zhao C, Yan J, Malola S, Honkala K, Hakkinen H, Teo B K, Zheng N. ACS Nano, 2019,13:5975. https://www.ncbi.nlm.nih.gov/pubmed/31794193

doi: 10.1021/acsnano.9b08220 pmid: 31794193
[43]
Yan J, Zhang J, Chen X, Malola S, Zhou B, Selenius E, Zhang X, Yuan P, Deng G, Liu K, Su H, Teo B K, Häkkinen H, Zheng L, Zheng N. Natl. Sci. Rev., 2018,5:694.
[44]
Ren L, Yuan P, Su H, Malola S, Lin S, Tang Z, Teo B K, Häkkinen H, Zheng L, Zheng N. J. Am. Chem. Soc., 2017,139:13288. https://www.ncbi.nlm.nih.gov/pubmed/28892364

doi: 10.1021/jacs.7b07926 pmid: 28892364
[45]
Du Y, Sheng H, Astruc D, Zhu M. Chem. Rev., 2020,120:526. https://www.ncbi.nlm.nih.gov/pubmed/30901198

doi: 10.1021/acs.chemrev.8b00726 pmid: 30901198
[46]
Wang Y, Wan X K, Ren L, Su H, Li G, Malola S, Lin S, Tang Z, Hakkinen H, Teo B K, Wang Q M, Zheng N. J. Am. Chem. Soc., 2016,138:3278. https://www.ncbi.nlm.nih.gov/pubmed/27992204

doi: 10.1021/jacs.6b08697 pmid: 27992204
[47]
Fu F, Xiang J, Cheng H, Cheng L, Chong H, Wang S, Li P, Wei S, Zhu M, Li Y. ACS Catal., 2017,7:1860. https://www.ncbi.nlm.nih.gov/pubmed/29142780

doi: 10.1021/acscatal.7b01749 pmid: 29142780
[48]
Dai Y, Liu S, Zheng N. J. Am. Chem. Soc., 2014,136:5583. https://www.ncbi.nlm.nih.gov/pubmed/25494921

doi: 10.1021/ja5104525 pmid: 25494921
[49]
Zhang G R, Wolker T, Sandbeck D J S, Munoz M, Mayrhofer K J J, Cherevko S, Etzold B J M. ACS Catal., 2018,8:8244. https://www.ncbi.nlm.nih.gov/pubmed/30740261

doi: 10.1021/acscatal.8b00626 pmid: 30740261
[50]
Snyder J, Fujita T, Chen M W, Erlebacher J. Nat. Mater., 2010,9:904. https://www.ncbi.nlm.nih.gov/pubmed/20953182

doi: 10.1038/nmat2878 pmid: 20953182
[51]
Tan Y M, Xu C F, Chen G X, Zheng N F, Xie Q J. Energy Environ., 2012,5:6923.
[52]
Buckley A K, Lee M, Cheng T, Kazantsev R V, Larson D M, Goddard Iii W A, Toste F D, Toma F M. J. Am. Chem. Soc., 2019,141:7355. https://www.ncbi.nlm.nih.gov/pubmed/31820965

doi: 10.1021/jacs.9b10205 pmid: 31820965
[53]
Rogers S M, Catlow C R A, Chan-Thaw C E, Chutia A, Jian N, Palmer R E, Perdjon R E, Thetford A, Dimitratos N, Villa A, Wells P P. ACS Catal., 2017,7:2266. https://www.ncbi.nlm.nih.gov/pubmed/29142780

doi: 10.1021/acscatal.7b01749 pmid: 29142780
[54]
Shi W, Cao L, Zhang H, Zhou X, An B, Lin Z, Dai R, Li J, Wang C, Lin W. Angew. Chem. Int. Ed., 2017,56:9704.
[55]
Jin Z, Wang L, Zuidema E, Mondal K, Zhang M, Zhang J, Wang C, Meng X, Yang H, Mesters C, Xiao F S. Science, 2020,367:193. https://www.ncbi.nlm.nih.gov/pubmed/31919221

doi: 10.1126/science.aaw1108 pmid: 31919221
[56]
Wang G, Ruhling A, Amirjalayer S, Knor M, Ernst J B, Richter C, Gao H J, Timmer A, Gao H Y, Doltsinis N L, Glorius F, Fuchs H. Nat. Chem., 2017,9:152. https://www.ncbi.nlm.nih.gov/pubmed/28282049

doi: 10.1038/nchem.2622 pmid: 28282049
[57]
Marshall S T, O'Brien M, Oetter B, Corpuz A, Richards R M, Schwartz D K, Medlin J W. Nat. Mater., 2010,9:853. https://www.ncbi.nlm.nih.gov/pubmed/20835234

doi: 10.1038/nmat2849 pmid: 20835234
[58]
Love J C, Estroff L A, Kriebel J K, Nuzzo R G, Whitesides G M, Chem. Rev., 2005,105:1103. https://www.ncbi.nlm.nih.gov/pubmed/16277373

doi: 10.1021/cr0400919 pmid: 16277373
[59]
Marshall S T, Horiuchi C M, Zhang W Y, Medlin J W. J. Phys. Chem. C, 2008,112:20406. https://pubs.acs.org/doi/10.1021/jp804936y

doi: 10.1021/jp804936y
[60]
Medlin J W, Barteau M A, Vohs J M. J. Mol. Catal. A: Chem., 2000,163:129. https://linkinghub.elsevier.com/retrieve/pii/S1381116900004064

doi: 10.1016/S1381-1169(00)00406-4
[61]
Pang S H, Schoenbaum C A, Schwartz D K, Medlin J W, Nat. Commun., 2013,4:2448. https://www.ncbi.nlm.nih.gov/pubmed/24352200

doi: 10.1038/ncomms3986 pmid: 24352200
[62]
Pang S H, Schoenbaum C A, Schwartz D K, Medlin J W, ACS Catal., 2014,4:3123. https://www.ncbi.nlm.nih.gov/pubmed/24527267

doi: 10.1021/cs400946x pmid: 24527267
[63]
Chen S, Wojcieszak R, Dumeignil F, Marceau E, Royer S. Chem. Rev., 2018,118:11023. https://www.ncbi.nlm.nih.gov/pubmed/30362725

doi: 10.1021/acs.chemrev.8b00134 pmid: 30362725
[64]
Kumar G, Lien C H, Janik M J, Medlin J W, ACS Catal., 2016,6:5086. https://www.ncbi.nlm.nih.gov/pubmed/27668125

doi: 10.1021/acscatal.6b00829 pmid: 27668125
[65]
Ortuño M A, López N. ACS Catal., 2018,8:6138. https://www.ncbi.nlm.nih.gov/pubmed/30740261

doi: 10.1021/acscatal.8b00626 pmid: 30740261
[66]
Zhang F Q, Fang J J, Huang L, Sun W M, Lin Z, Shi Z Q, Kang X W, Chen S W. ACS Catal., 2019,9:98. https://pubs.acs.org/doi/10.1021/acscatal.8b04028

doi: 10.1021/acscatal.8b04028
[67]
Zhao Y, Fu G, Zheng N F. Catal. Today, 2017,279:36. https://linkinghub.elsevier.com/retrieve/pii/S0920586116303431

doi: 10.1016/j.cattod.2016.05.017
[68]
Wu B, Huang H, Yang J, Zheng N, Fu G. Angew. Chem. Int. Ed., 2012,51:3440.
[69]
Yan C, Yuan R, Pfalzgraff W C, Nishida J, Wang L, Markland T E, Fayer M D. Proc. Natl. Acad. Sci. U. S. A., 2016,113:4929. https://www.ncbi.nlm.nih.gov/pubmed/27965389

doi: 10.1073/pnas.1611861114 pmid: 27965389
[70]
Kahsar K R, Schwartz D K, Medlin J W. J. Am. Chem. Soc., 2014,136:520. 474930da-4221-402d-af12-2f386047395dhttp://dx.doi.org/10.1021/ja411973p

doi: 10.1021/ja411973p
[71]
Chen T Y, Rodionov V O. ACS Catal., 2016,6:4025. https://www.ncbi.nlm.nih.gov/pubmed/27668125

doi: 10.1021/acscatal.6b00829 pmid: 27668125
[72]
Szewczyk M, Sobczak G, Sashuk V. ACS Catal., 2018,8:2810. https://www.ncbi.nlm.nih.gov/pubmed/30740261

doi: 10.1021/acscatal.8b00626 pmid: 30740261
[73]
Burgi T B. A. Acc. Chem. Res., 2004,37:909. https://www.ncbi.nlm.nih.gov/pubmed/15612681

doi: 10.1021/ar040072l pmid: 15612681
[74]
Horvath J D, Gellman A J. J. Am. Chem. Soc., 2001,123:7953. https://www.ncbi.nlm.nih.gov/pubmed/11749545

doi: 10.1021/ja004316i pmid: 11749545
[75]
Stephenson M J, Lambert R M. J. Phys. Chem. B, 2001,105:12832. https://pubs.acs.org/doi/10.1021/jp012372f

doi: 10.1021/jp012372f
[76]
Schunack M, Petersen L, Kuhnle A, Laegsgaard E, Stensgaard I, Johannsen I, Besenbacher F. Phys. Rev. Lett., 2001,86:456. https://www.ncbi.nlm.nih.gov/pubmed/11177854

doi: 10.1103/PhysRevLett.86.456 pmid: 11177854
[77]
Humblot V, Haq S, Muryn C, Hofer W A, Raval R. J. Am. Chem. Soc., 2002,124:503. https://www.ncbi.nlm.nih.gov/pubmed/11792223

doi: 10.1021/ja012021e pmid: 11792223
[78]
Schwalm O, Minder B, Weber J, Baiker A. Catal. Lett., 1994,23:271. http://link.springer.com/10.1007/BF00811362

doi: 10.1007/BF00811362
[79]
Blaser H U, Jalett H P, Monti D M, Baiker A, Wehrli J T. Stud. Surf. Sci. Catal., 1991,67:147.
[80]
Ye R, Zhukhovitskiy A V, Kazantsev R V, Fakra S C, Wickemeyer B B, Toste F D, Somorjai G A. J. Am. Chem. Soc., 2018,140:4144. https://www.ncbi.nlm.nih.gov/pubmed/29506380

doi: 10.1021/jacs.8b01017 pmid: 29506380
[81]
Boles M A, Ling D, Hyeon T, Talapin D V. Nat. Mater., 2016,15:141. https://www.ncbi.nlm.nih.gov/pubmed/26796733

pmid: 26796733
[82]
Zherebetskyy D, Scheele M, Zhang Y, Bronstein N, Thompson C, Britt D, Salmeron M, Alivisatos P, Wang L W. Science, 2014,344:1380. https://www.ncbi.nlm.nih.gov/pubmed/24970072

doi: 10.1126/science.344.6191.1460-c pmid: 24970072
[83]
Anderson N C, Hendricks M P, Choi J J, Owen J S. J. Am. Chem. Soc., 2013,135:1856. https://www.ncbi.nlm.nih.gov/pubmed/24320157

doi: 10.1021/ja408772p pmid: 24320157
[84]
Ip A H, Thon S M, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny L R, Carey G H, Fischer A, Kemp K W, Kramer I J, Ning Z, Labelle A J, Chou K W, Amassian A, Sargent E H, Nat. Nanotechnol., 2012,7:577. https://www.ncbi.nlm.nih.gov/pubmed/22842552

doi: 10.1038/nnano.2012.127 pmid: 22842552
[85]
Aldana J, Wang Y A, Peng X. J. Am. Chem. Soc., 2001,123:8844. https://www.ncbi.nlm.nih.gov/pubmed/11535092

doi: 10.1021/ja016424q pmid: 11535092
[86]
Ning Z, Voznyy O, Pan J, Hoogland S, Adinolfi V, Xu J, Li M, Kirmani A R, Sun J P, Minor J, Kemp K W, Dong H, Rollny L, Labelle A, Carey G, Sutherland B, Hill I, Amassian A, Liu H, Tang J, Bakr O M, Sargent E H, Nat. Mater., 2014,13:822. https://www.ncbi.nlm.nih.gov/pubmed/24907929

doi: 10.1038/nmat4007 pmid: 24907929
[87]
Chuang C H, Brown P R, Bulovic V, Bawendi M G. Nat. Mater., 2014,13:796. https://www.ncbi.nlm.nih.gov/pubmed/24859641

doi: 10.1038/nmat3984 pmid: 24859641
[88]
Alivisatos A P. Science, 1996,271:933. https://www.sciencemag.org/lookup/doi/10.1126/science.271.5251.933

doi: 10.1126/science.271.5251.933
[89]
Chen G, Xu C, Huang X, Ye J, Gu L, Li G, Tang Z, Wu B, Yang H, Zhao Z, Zhou Z, Fu G, Zheng N. Nat. Mater., 2016,15:564. https://www.ncbi.nlm.nih.gov/pubmed/26808458

doi: 10.1038/nmat4555 pmid: 26808458
[90]
Guo M, Li H, Ren Y Q, Ren X M, Yang Q H, Li C. ACS Catal., 2018,8:6476. https://www.ncbi.nlm.nih.gov/pubmed/30740261

doi: 10.1021/acscatal.8b00626 pmid: 30740261
[91]
Ren X, Guo M, Li H, Li C, Yu L, Liu J, Yang Q. Angew. Chem. Int. Ed., 2019,58:14483. https://onlinelibrary.wiley.com/toc/15213773/58/41

doi: 10.1002/anie.v58.41
[92]
Cao Z, Derrick J S, Xu J, Gao R, Gong M, Nichols E M, Smith P T, Liu X, Wen X, Coperet C, Chang C J. Angew. Chem. Int. Ed., 2018,57:4981.
[93]
Sung S S, Hoffmann R. J. Am. Chem. Soc., 1985,107:578.
[94]
Huang X, Tang S, Mu X, Dai Y, Chen G, Zhou Z, Ruan F, Yang Z, Zheng N. Nat. Nanotechnol., 2011,6:28. https://www.ncbi.nlm.nih.gov/pubmed/21131956

doi: 10.1038/nnano.2010.235 pmid: 21131956
[95]
Dai Y, Mu X, Tan Y, Lin K, Yang Z, Zheng N, Fu G. J. Am. Chem. Soc., 2012,134:7073. https://www.ncbi.nlm.nih.gov/pubmed/23215037

doi: 10.1021/ja310330m pmid: 23215037
[96]
Chen G, Yang H, Wu B, Zheng Y, Zheng N. Dalton Trans., 2013,42:12699. https://www.ncbi.nlm.nih.gov/pubmed/23732536

doi: 10.1039/c3dt50942g pmid: 23732536
[97]
Rodriguez P, Kwon Y, Koper M T, Nat. Chem., 2011,4:177. https://www.ncbi.nlm.nih.gov/pubmed/22354413

doi: 10.1038/nchem.1221 pmid: 22354413
[98]
Riscoe A R, Wrasman C J, Herzing A A, Hoffman A S, Menon A, Boubnov A, Vargas M, Bare S R, Cargnello M. Nat. Catal., 2019,2:852. https://doi.org/10.1038/s41929-019-0322-7

doi: 10.1038/s41929-019-0322-7
[99]
Xu X, Goodman D W. Phys. Chem., 1993,97:7711.
[100]
Falsig H, Hvolbaek B, Kristensen I S, Jiang T, Bligaard T, Christensen C H, Norskov J K. Angew. Chem. Int. Ed., 2008,47:4835.
[101]
Lari G M, Puertolas B, Shahrokhi M, Lopez N, Perez-Ramirez J. Angew. Chem. Int. Ed., 2017,56:1775.
[102]
Schrader I, Warneke J, Backenkohler J, Kunz S. J. Am. Chem. Soc., 2015,137:905. https://www.ncbi.nlm.nih.gov/pubmed/25530504

doi: 10.1021/ja511349p pmid: 25530504
[103]
Fiorio J L, López N, Rossi L M, ACS Catal., 2017,7:2973. https://www.ncbi.nlm.nih.gov/pubmed/29142780

doi: 10.1021/acscatal.7b01749 pmid: 29142780
[104]
Xu S, Carter E A. J. Am. Chem., 2019,141:9895.
[105]
Xu S, Carter E A. J. Am. Chem., 2018,140:8732.
[106]
Weinberg D R, Gagliardi C J, Hull J F, Murphy C F, Kent C A, Westlake B C, Paul A, Ess D H, McCafferty D G, Meyer T J. Chem. Rev., 2012,112:4016. https://www.ncbi.nlm.nih.gov/pubmed/22937828

doi: 10.1021/cr300208b pmid: 22937828
[107]
Cukier R I, Nocera D G. Rev. Phys. Chem., 1998,49:337.
[108]
Luska K L, Migowski P, El Sayed S, Leitner W. Angew. Chem. Int. Ed., 2015,54:15750.
[109]
Zhang J, Ellis L D, Wang B W, Dzara M J, Sievers C, Pylypenko S, Nikolla E, Medlin J W, Nat. Catal., 2018,1:148.
[110]
Liu P, Zhao Y, Qin R, Mo S, Chen G, Gu L, Chevrier D M, Zhang P, Guo Q, Zang D, Wu B, Fu G, Zheng N. Science, 2016,352:797. https://www.ncbi.nlm.nih.gov/pubmed/27174982

doi: 10.1126/science.aaf5251 pmid: 27174982
[1] Yue Yang, Jueyu Wang, Min Zhao, Daizong Cui. Virus-Templated Synthesis of Metal Nanomaterials and Their Application [J]. Progress in Chemistry, 2019, 31(7): 1007-1019.
[2] Wang Jiandong, Xu Jiaxi. Stereoselective Models for the Electrophilic Addition on the Double Bond Adjacent to A Chiral Centre [J]. Progress in Chemistry, 2016, 28(6): 784-800.
[3] Deng Yunpan, Yang Bo, Yu Gang, Zhuo Qiongfang, Deng Shubo, Zhang Hong. Catalytic Hydrodehalogenation of Halogenated Organic Compounds with Metal Complexes [J]. Progress in Chemistry, 2016, 28(4): 564-576.
[4] Cui Shuyuan, Liu Jun, Wu Wei. Preparation of Metal Nanoparticles-Based Conductive Inks and Their Applications in Printed Electronics [J]. Progress in Chemistry, 2015, 27(10): 1509-1522.
[5] Zheng Yongpeng, Xu Jiaxi. Thorpe-Ingold Effect and Its Application in Cyclizations in Organic Chemistry [J]. Progress in Chemistry, 2014, 26(09): 1471-1491.
[6] Tian Shanxi. Hydrogen Bonding Effects on Conformational Stabilities and Dissociative Photoionization Dynamics of Amino Acids [J]. Progress in Chemistry, 2009, 21(04): 600-605.
[7] Xu Feng|Peng Changlan|Lv Hongxia. Applications of Polysaccharides in Synthesis of Metal Nanomaterials [J]. Progress in Chemistry, 2008, 20(0203): 273-279.