中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (10): 1509-1522 DOI: 10.7536/PC150416 Previous Articles   

• Review and comments •

Preparation of Metal Nanoparticles-Based Conductive Inks and Their Applications in Printed Electronics

Cui Shuyuan1, Liu Jun1,2, Wu Wei1,2,3*   

  1. 1. Laboratory of Printable Functional Nanomaterials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan 430072;
    2. Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China;
    3. Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51201115, 51171132), the China Postdoctoral Science Foundation (No.2014M550406), the Hong Kong Scholars Program, the Hubei Provincial Natural Science Foundation (No.2014CFB261), the Fundamental Research Funds for the Central Universities and Wuhan University.
PDF ( 2662 ) Cited
Export

EndNote

Ris

BibTeX

Enormous efforts have been made towards the next generation of flexible, low-cost, environmental friendly printed electronics. Printed electronics are being explored for the manufacture of large-scale and flexible electronic devices by the patterned application of printable materials. They involve a large number of frontier scientific problems, including many generic technologies in materials, devices, manufacturing process and applications. First of all, preparation of environmental friendly and low-cost conductive ink plays a key role in the development of printed electronics. Combining with the recent progress of printed electronics, this review focuses on the synthesis of metal nanoparticles, preparation of metal nanoparticles-based conductive inks and their applications. The classifications, stabilization of printable metal nanoparticles, preparation method of conductive inks and sintering process, and their progresses in sensors, thin-film transistors, solar cells, and RFID are also briefly reviewed.

Contents
1 Introduction
2 Preparation of printable metal nanoparticles
2.1 Classification of metal nanoparticles
2.2 Synthesis of metal nanoparticles
2.3 Stabilization of metal nanoparticles
3 Preparation of metal nanoparticles-based conductive inks
4 Post-printing treatment and resistivity
4.1 Electrical resistivity
4.2 Sintering of printed conductive patterns
5 Applications
5.1 Transparent electrodes
5.2 Light emitting devices
5.3 Thin film transistors
5.4 Solar cells
5.5 Sensors
5.6 RFID tags
6 Conclusions

CLC Number: 

[1] Kim M G, Kanatzidis M G, Facchetti A, Marks T J. Nat. Mater., 2011, 10 (5): 382.
[2] Kim S H, Hong K, Xie W, Lee K H, Zhang S, Lodge T P, Frisbie C D. Adv. Mater., 2013, 25 (13): 1822.
[3] Wu W, Yang S, Zhang S, Zhang H, Jiang C. J. Colloid Interface Sci., 2014, 427: 15.
[4] Varela F, Armendáriz E, Wolluschek C. Chem. Eng. Process., 2011, 50 (5/6): 589.
[5] Kamyshny A, Steinke J, Magdassi S. Open Appl. Phys. J., 2011, 4: 19.
[6] Duan S K, Niu Q L, Wei J F, He J B, Yin Y A, Zhang Y. Phys. Chem. Chem. Phys., 2015, 17 (12): 8106.
[7] Sanchez-Romaguera V, Wünscher S, Turki B M, Abbel R, Barbosa S, Tate D J, Oyeka D, Batchelor J C, Parker E A, Schubert U S. J. Mater. Chem. C, 2015, 3: 2132.
[8] Nelson S F, Ellinger C R, Levy D H. ACS Appl. Mater. Interfaces, 2015,7 (4): 2754.
[9] Guo F, Li N, Radmilovi Dc' V V, Radmilovi Dc' V R, Turbiez M, Spiecker E, Forberich K, Brabec C J. Energy Environ. Sci., 2015, DOI: 10.1039/C5EE00184F.
[10] Arduini F, Zanardi C, Cinti S, Terzi F, Moscone D, Palleschi G, Seeber R. Sens. Actuators, B, 2015, 212: 536.
[11] Sirringhaus H, Kawase T, Friend R, Shimoda T, Inbasekaran M, Wu W, Woo E. Science, 2000, 290 (5499): 2123.
[12] Jahn S F, Blaudeck T, Baumann R R, Jakob A, Ecorchard P, Rüffer T, Lang H, Schmidt P. Chem. Mater., 2010, 22 (10): 3067.
[13] Liu L, Wan X, Sun L, Yang S, Dai Z, Tian Q, Lei M, Xiao X, Jiang C, Wu W. RSC Adv., 2015, 5 (13): 9783.
[14] Moisala A, Nasibulin A G, Kauppinen E I. J. Phys. C, 2003, 15 (42): S3011.
[15] Lee Y, Choi J R, Lee K J, Stott N E, Kim D. Nanotechnology, 2008, 19 (41): 415604.
[16] Kosmala A, Wright R, Zhang Q, Kirby P. Mater. Chem. Phys., 2011, 129 (3): 1075.
[17] Kamyshny A, Magdassi S. Small, 2014, 10 (17): 3515.
[18] Jung I, Jo Y H, Kim I, Lee H M. J. Electron. Mater., 2015, 41 (1): 155.
[19] Jeong S, Lee S H, Jo Y, Lee S S, Seo Y H, Ahn B W, Kim G, Jang G E, Park J U, Ryu B H. J. Mater. Chem. C, 2013, 1 (15): 2704.
[20] Trinh D C, Dang T M D, Huynh K K, Fribourg-Blanc E, Dang M C. Adv. Nat. Sci., 2015, 6 (2): 025018.
[21] Jing J J, Xie J, Chen G Y, Li W H, Zhang M M. J. Exp. Nanosci., 2015, DOI:10.1080/17458080.2015.1012751.
[22] 辛智青(Xin Z Q), 王思(Wang S), 李风煜(Li F Y), 张兴业(Zhang X Y), 张志良(Zhang Z L), 宋延林(Song Y L). 中国科学: 化学(Science China: Chemistry), 2013, 6: 677.
[23] Lu A H, Salabas E e L, Schüth F. Angew. Chem. Int. Ed., 2007, 46 (8): 1222.
[24] Semaltianos N, Hendry E, Chang H, Wears M. Laser Phys. Lett., 2015, 12 (4): 046201.
[25] Kim C K, Lee G J, Lee M K, Rhee C K. Powder Technol., 2014, 263: 1.
[26] Li N, Zhao P, Astruc D. Angew. Chem. Int. Ed., 2014, 53 (7): 1756.
[27] Yusof N S M, Ashokkumar M. Chem. Phys. Chem., 2015, 16 (4): 775.
[28] Tamburri E, Angjellari M, Tomellini M, Gay S, Reina G, Lavecchia T, Barbini P, Pasquali M, Orlanducci S. Electrochim. Acta., 2015, 157: 115.
[29] Yun J, Cho K, Park B, Kang H C, Ju B K, Kim S. Jap. J. Appl. Phys., 2008, 47 (6S): 5070.
[30] Jensen G C, Krause C E, Sotzing G A, Rusling J F. Phys. Chem. Chem. Phys., 2011, 13 (11): 4888.
[31] Huang Q, Shen W, Xu Q, Tan R, Song W. Mater. Chem. Phys., 2014, 147 (3): 550.
[32] Ko S H, Chung J, Hotz N, Nam K H, Grigoropoulos C P. J. Micromechanic. Microeng., 2010, 20 (12): 125010.
[33] Grouchko M, Kamyshny A, Magdassi S. J. Mater. Chem., 2009, 19 (19): 3057.
[34] Li D, Sutton D, Burgess A, Graham D, Calvert P D. J. Mater. Chem., 2009, 19 (22): 3719.
[35] Yu H, Li L, Zhang Y. Scripta Mater., 2012, 66 (11): 931.
[36] Park S, Vosguerichian M, Bao Z. Nanoscale, 2013, 5 (5): 1727.
[37] Vaseem M, Lee K M, Hong A R, Hahn Y B. ACS Appl. Mater. Interfaces, 2012, 4 (6): 3300.
[38] Shen W, Zhang X, Huang Q, Xu Q, Song W. Nanoscale, 2014, 6 (3): 1622.
[39] Jeong S, Song H C, Lee W W, Lee S S, Choi Y, Son W, Kim E D, Paik C H, Oh S H, Ryu B H. Langmuir, 2011, 27 (6): 3144.
[40] Ahn B Y, Walker S B, Slimmer S C, Russo A, Gupta A, Kranz S, Duoss E B, Malkowski T F, Lewis J A. J. Visua. Exp., 2011, (58): 3189.
[41] Jeong S, Woo K, Kim D, Lim S, Kim J S, Shin H, Xia Y, Moon J. Adv. Funct. Mater., 2008, 18 (5): 679.
[42] Woo Y J, Park K H, Park O O, Wang D H. Org. Electron., 2015, 16: 118.
[43] Magdassi S, Grouchko M, Kamyshny A. Mater., 2010, 3 (9): 4626.
[44] Effenberger F B, Sulca M A, Machini M T, Couto R A, Kiyohara P K, Machado G, Rossi L M. J. Nanopart. Res., 2014, 16 (11): 1.
[45] Farraj Y, Grouchko M, Magdassi S. Chem. Commun., 2015, 51, 1587.
[46] Glover R D, Miller J M, Hutchison J E. ACS Nano, 2011, 5 (11): 8950.
[47] Dang T M D, Le T T T, Fribourg-Blanc E, Dang M C. Adv. Nat. Sci., 2011, 2 (2): 025004.
[48] Malviya K D, Chattopadhyay K. J. Mater. Sci., 2015, 50 (2): 980.
[49] Ghosh Chaudhuri R, Paria S. Chem. Rev., 2011, 112 (4): 2373.
[50] Bao Y, Calderon H, Krishnan K M. J. Phys. Chem. C, 2007, 111 (5): 1941.
[51] Wang L, Clavero C, Huba Z, Carroll K J, Carpenter E E, Gu D, Lukaszew R A. Nano Lett., 2011, 11 (3): 1237.
[52] Zhao Y, Yang X, Tian J, Wang F, Zhan L. Int. J. Hydrogen Energy, 2010, 35 (8): 3249.
[53] Chen D, Li J, Shi C, Du X, Zhao N, Sheng J, Liu S. Chem. Mater., 2007, 19 (14): 3399.
[54] Kamyshny A, Ben-Moshe M, Aviezer S, Magdassi S. Macromol. Rapid Commun., 2005, 26 (4): 281.
[55] Park B K, Kim D, Jeong S, Moon J, Kim J S. Thin Solid Films, 2007, 515 (19): 7706.
[56] Muzikansky A, Nanikashvili P, Grinblat J, Zitoun D. J. Phys. Chem. C, 2013, 117 (6): 3093.
[57] Joo S J, Park S H, Moon C J, Kim H S. ACS Appl. Mater. Interfaces, 2015, 7 (10): 5674.
[58] Chen S P, Chiu H L, Wang P H, Liao Y C. ECS J. Solid State Sci. Technol., 2015, 4 (4): P3026.
[59] Chung W H, Hwang H J, Kim H S. Thin Solid Films, 2015, 580: 61.
[60] Zhang Z, Zhang X, Xin Z, Deng M, Wen Y, Song Y. Nanotechnology, 2011, 22 (42): 425601.
[61] Lewis J A, Ahn B Y. Nature, 2015, 518 (7537): 42.
[62] Kullmann C, Schirmer N C, Lee M T, Ko S H, Hotz N, Grigoropoulos C P, Poulikakos D. J. Micromechanics Microeng., 2012, 22 (5): 055022.
[63] Kamyshny A, Magdassi S. Small, 2014, 10 (17): 3515.
[64] Layani M, Cooperstein I, Magdassi S. J. Mater. Chem. C, 2013, 1 (19): 3244.
[65] Perelaer J, de Gans B J, Schubert U S. Adv. Mater., 2006, 18 (16): 2101.
[66] Jo Y H, Jung I, Choi C S, Kim I, Lee H M. Nanotechnology, 2011, 22 (22): 225701.
[67] Lee H, Yang M. Appl. Phys. A, 2015: 1.
[68] 吴美兰(Wu M L),周雪琴(Zhou X Q),李巍(Li W),莫黎昕(Mo L X),刘东志(Liu D Z). 化工进展(Chemical Industry and Engineering Progress), 2012, 31 (8): 1806.
[69] Kim H S, Dhage S R, Shim D E, Hahn H T. Appl. Phys. A, 2009, 97 (4): 791.
[70] Kim D, Jeong S, Park B K, Moon J. Appl. Phys. Lett., 2006, 89 (26): 264101.
[71] Lee H H, Chou K S, Huang K C. Nanotechnology, 2005, 16 (10): 2436.
[72] Toshima N, Yonezawa T. New J. Chem., 1998, 22 (11): 1179.
[73] Perelaer J, Smith P J, Mager D, Soltman D, Volkman S K, Subramanian V, Korvink J G, Schubert U S. J. Mater. Chem., 2010, 20 (39): 8446.
[74] Woo K, Bae C, Jeong Y, Kim D, Moon J. J. Mater. Chem., 2010, 20 (19): 3877.
[75] Joo M, Lee B, Jeong S, Lee M. Thin Solid Films, 2012, 520 (7): 2878.
[76] Moon Y J, Kang H, Kang K, Moon S J. J. Electron. Mater., 2015, 44 (4): 1192.
[77] Denneulin A, Blayo A, Neuman C, Bras J. J. Nanopart. Res., 2011, 13 (9): 3815.
[78] Hösel M, Krebs F C. J. Mater. Chem., 2012, 22 (31): 15683.
[79] Ko S H, Pan H, Grigoropoulos C P, Luscombe C K, Fréchet J M, Poulikakos D. Nanotechnology, 2007, 18 (34): 345202.
[80] Choi J H, Ryu K, Park K, Moon S J. Int. J. Heat Mass Transfer, 2015, 85: 904.
[81] Tobjörk D, Aarnio H, Pulkkinen P, Bollström R, Määttänen A, Ihalainen P, Mäkelä T, Peltonen J, Toivakka M, Tenhu H, Österbacka R. Thin Solid Films, 2012, 520 (7): 2949.
[82] Galagan Y, Coenen E W C, Abbel R, van Lammeren T J, Sabik S, Barink M, Meinders E R, Andriessen R, Blom P W M. Org. Electron., 2013, 14 (1): 38.
[83] Ko S H, Pan H, Grigoropoulos C P, Luscombe C K, Fréchet J M, Poulikakos D. Appl. Phys. Lett., 2007, 90 (14): 141103.
[84] Hong S, Yeo J, Kim G, Kim D, Lee H, Kwon J, Lee H, Lee P, Ko S H. ACS Nano, 2013, 7 (6): 5024.
[85] Perelaer J, Schubert U S. J. Mater. Res., 2013, 28 (04): 564.
[86] Perelaer J, Jani R, Grouchko M, Kamyshny A, Magdassi S, Schubert U S. Adv. Mater., 2012, 24 (29): 3993.
[87] Kim K S, Park B G, Jung K H, Kim J W, Jeong M Y, Jung S B. J. Nanosci. Nanotechnol., 2015, 15 (3): 2333.
[88] Perelaer J, Abbel R, Wünscher S, Jani R, van Lammeren T, Schubert U S. Adv. Mater., 2012, 24 (19): 2620.
[89] Perelaer J, Klokkenburg M, Hendriks C E, Schubert U S. Adv. Mater., 2009, 21 (47): 4830.
[90] Chaim R. Mater. Sci. Eng. A, 2007, 443 (1): 25.
[91] Reinhold I, Hendriks C E, Eckardt R, Kranenburg J M, Perelaer J, Baumann R R, Schubert U S. J. Mater. Chem., 2009, 19 (21): 3384.
[92] Wünscher S, Stumpf S, Teichler A, Pabst O, Perelaer J, Beckert E, Schubert U S. J. Mater. Chem., 2012, 22 (47): 24569.
[93] Hummelgård M, Zhang R, Nilsson H E, Olin H. PLoS One, 2011, 6 (2): e17209.
[94] Allen M, Alastalo A, Suhonen M, Mattila T, Leppaniemi J, Seppa H. IEEE T. Microwave Theory Tech., 2011, 59 (5): 1419.
[95] Allen M L, Aronniemi M, Mattila T, Alastalo A, Ojanperä K, Suhonen M, Seppä H. Nanotechnology, 2008, 19 (17): 175201.
[96] Lee H, Kim D, Lee I, Moon Y J, Hwang J Y, Park K, Moon S J. Jap. J. Appl. Phys., 2014, 53 (5S3): 05HC07.
[97] Cooperstein I, Layani M, Magdassi S. J. Mater. Chem. C, 2015, 3: 2040.
[98] Tang Y, He W, Wang S, Tao Z, Cheng L. Crystengcomm., 2014, 16 (21): 4431.
[99] Magdassi S, Grouchko M, Berezin O, Kamyshny A. ACS Nano, 2010, 4 (4): 1943.
[100] Tang Y, He W, Zhou G, Wang S, Yang X, Tao Z, Zhou J. Nanotechnology, 2012, 23 (35): 355304.
[101] Layani M, Grouchko M, Shemesh S, Magdassi S. J. Mater. Chem., 2012, 22 (29): 14349.
[102] Grouchko M, Kamyshny A, Mihailescu C F, Anghel D F, Magdassi S. ACS Nano, 2011, 5 (4): 3354.
[103] Layani M, Magdassi S. J. Mater. Chem., 2011, 21 (39): 15378.
[104] Yang S, Wang C F, Chen S. Angew. Chem., 2011, 123 (16): 3790.
[105] Lu Z, Layani M, Zhao X, Tan L P, Sun T, Fan S, Yan Q, Magdassi S, Hng H H. Small, 2014, 10 (17): 3551.
[106] Hübler A, Trnovec B, Zillger T, Ali M, Wetzold N, Mingebach M, Wagenpfahl A, Deibel C, Dyakonov V. Adv. Energy Mater., 2011, 1 (6): 1018.
[107] Russo A, Ahn B Y, Adams J J, Duoss E B, Bernhard J T, Lewis J A. Adv. Mater., 2011, 23 (30): 3426.
[108] Niu C. MRS Bull., 2011, 36 (10): 766.
[109] Hecht D S, Kaner R B. MRS Bull., 2011, 36 (10): 749.
[110] Kang M G, Guo L J. Adv. Mater., 2007, 19 (10): 1391.
[111] Hu L, Wu H, Cui Y. MRS Bull., 2011, 36 (10): 760.
[112] Saran N, Parikh K, Suh D S, Muñoz E, Kolla H, Manohar S K. J. Am. Chem. Soc., 2004, 126 (14): 4462.
[113] Hwang B, Shin H A, Kim T, Joo Y C, Han S M. Small, 2014,10 (16): 3397.
[114] Repetto D, Giordano M C, Martella C, de Mongeot F B. Appl. Surf. Sci., 2015, 327: 444.
[115] Layani M, Gruchko M, Milo O, Balberg I, Azulay D, Magdassi S. ACS Nano, 2009, 3 (11): 3537.
[116] Park J H, Lee D Y, Seung W, Sun Q, Kim S W, Cho J H. J. Phys. Chem. C, 2015, 119 (14): 7802.
[117] Azoubel S, Shemesh S, Magdassi S. Nanotechnology, 2012, 23 (34): 344003.
[118] Zhang C, Marvinney C E, Xu H Y, Liu W Z, Wang C L, Zhang L X, Wang J N, Ma J G, Liu Y C. Nanoscale, 2015, 7 (3): 1073.
[119] Wu X, Liu L, Deng Z, Nian L, Zhang W, Hu D, Xie Z, Mo Y, Ma Y. Part. Part. Syst. Charact., 2015, DOI: 10.1002/ppsc.201400241.
[120] Song C H, Ok K H, Lee C J, Kim Y, Kwak M G, Han C J, Kim N, Ju B K, Kim J W. Org. Electron., 2015, 17: 208.
[121] Moonen P F, Yakimets I, Huskens J. Adv. Mater., 2012, 24 (41): 5526.
[122] Dasgupta S, Stoesser G, Schweikert N, Hahn R, Dehm S, Kruk R, Hahn H. Adv. Funct. Mater., 2012, 22 (23): 4909.
[123] Gamerith S, Klug A, Scheiber H, Scherf U, Moderegger E, List E J. Adv. Funct. Mater., 2007, 17 (16): 3111.
[124] Tang W, Feng L, Zhao J Q, Cui Q Y, Chen S J,Guo X J. J. Mater. Chem. C, 2014, 2 (11): 1995.
[125] Noguchi Y, Sekitani T, Yokota T, Someya T. Appl. Phys. Lett., 2008, 93 (4): 043303.
[126] Chen P, Fu Y, Aminirad R, Wang C, Zhang J, Wang K, Galatsis K, Zhou C. Nano Lett., 2011, 11 (12): 5301.
[127] Hoppe H, Sariciftci N S. J. Mater. Res., 2004, 19 (07): 1924.
[128] Hecht D S, Hu L, Irvin G. Adv. Mater., 2011, 23 (13): 1482.
[129] Galagan Y, Zimmermann B, Coenen E W, Jørgensen M, Tanenbaum D M, Krebs F C, Gorter H, Sabik S, Slooff L H, Veenstra S C. Adv. Energy Mater., 2012, 2 (1): 103.
[130] 李祥高(Li X G), 吴宪(Wu X), 王世荣(Wang S R). 中国材料进展(Materials China), 2014, 33 (3): 156.
[131] 裴为华(Pei W H), 国冬梅(Guo D M), 耿照新(Geng Z X),陈弘达(Chen H D). 中国材料进展(Materials China), 2014, 33 (3): 172.
[132] Singh M, Haverinen H M, Dhagat P, Jabbour G E. Adv. Mater., 2010, 22 (6): 673.
[133] Saha K, Agasti S S, Kim C, Li X, Rotello V M. Chem. Rev., 2012, 112 (5): 2739.
[134] Hu C, Bai X, Wang Y, Jin W, Zhang X, Hu S. Anal. Chem., 2012, 84 (8): 3745.
[135] Wei W Y, White I M. Analyst, 2013, 138 (4): 1020.
[136] Polavarapu L, Manga K K, Yu K, Ang P K, Cao H D, Balapanuru J, Loh K P, Xu Q H. Nanoscale, 2011, 3 (5): 2268.
[137] Hoppmann E P, Wei W Y, White I M. Methods, 2013, 63 (3): 219.
[138] Dai Z, Xiao X, Wu W, Liao L, Mei F, Yu X, Guo S, Ying J, Ren F, Jiang C. Appl. Phys. Lett., 2014, 105 (21): 211902.
[139] Wu W, Liu L, Dai Z G, Liu J H, Yang S L, Zhou L, Xiao X H, Jiang C Z, Roy V A L. Sci. Rep., 2015, DOI: 10.1038/srep10208.
[140] Dang M C, Nguyen D S, Dang T M D, Tedjini S, Fribourg-Blanc E. Adv. Nat. Sci., 2014, 5 (2): 025012.
[141] Subramanian V, Fréchet J M, Chang P C, Huang D C, Lee J B, Molesa S E, Murphy A R, Redinger D R, Volkman S K. Proc. IEEE, 2005, 93 (7): 1330.
[142] Sanchez-Romaguera V, Wünscher S, Turki B M, Abbel R, Barbosa S, Tate D J, Oyeka D, Batchelor J C, Parker E A, Schubert U S. J. Mater. Chem. C, 2015, 3 (9): 2141.
[143] Wolf F M, Perelaer J, Stumpf S, Bollen D, Kriebel F, Schubert U S. J. Mater. Res., 2013, 28 (9): 1254.
[1] Jing Zhang, Xiaotao Zhang, Xiaochen Ren, Wenping Hu. Printed Organic Digital Circuits and Its Applications [J]. Progress in Chemistry, 2021, 33(3): 490-502.
[2] Yue Yang, Jueyu Wang, Min Zhao, Daizong Cui. Virus-Templated Synthesis of Metal Nanomaterials and Their Application [J]. Progress in Chemistry, 2019, 31(7): 1007-1019.
[3] Xu Feng|Peng Changlan|Lv Hongxia. Applications of Polysaccharides in Synthesis of Metal Nanomaterials [J]. Progress in Chemistry, 2008, 20(0203): 273-279.