中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (09): 1471-1491 DOI: 10.7536/PC140310 Previous Articles   Next Articles

• Review •

Thorpe-Ingold Effect and Its Application in Cyclizations in Organic Chemistry

Zheng Yongpeng*, Xu Jiaxi   

  1. State Key Laboratory of Chemical Engineering, Department of Organic Chemistry, Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21372025, 21172017) and the National Basic Research Program of China (Program 973) (No. 2013CB328905)

PDF ( 1972 ) Cited
Export

EndNote

Ris

BibTeX

The Thorpe-Ingold effect and its advances in both theoretical and experimental studies are introduced briefly. Its recent applications in cyclizations for formations of three-, four-, five-, and six-membered ring products are reviewed. The Thorpe-Ingold effect can promote intra- and intermolecular cyclizations effectively, accelerating reaction rates and improving yields in cyclizations. The effect exerts its influence in reactions through steric hindrance and/or electronic effect and is impacted by catalysts and solvents in some cases. Application of the effect can help some difficult cyclization reactions to occur smoothly, affording the desired products in good yields.

Contents
1 Thorpe-Ingold effect
2 Application in cyclizations involving formations of three-membered ring products
2.1 Cyclopropane derivatives
2.2 Ethylene oxide derivatives
3 Application in cyclizations involving formations of four-membered ring products
3.1 Cyclobutane deivatives
3.2 Oxacyclobutane derivatives
4 Application in cyclizations involving formations of five-membered ring products
4.1 Cyclopentane derivatives
4.2 Azacyclopentane derivatives
4.3 Oxacyclopentane derivatives
4.4 Thiazolidine derivatives
4.5 Phosphacyclopentane derivatives
4.6 Silicacyclopentane derivatives
5 Application in cyclizations involving formations of six-membered ring products
5.1 Cyclohexane derivatives
5.2 Azacyclohexane derivatives
5.3 Oxacyclohexane derivatives
5.4 Silicacyclohexane derivatives
6 Miscellaneous
7 Summary and prospects

CLC Number: 

[1] Jung M E, Piizzi G. Chem. Rev., 2005, 105: 1735.
[2] (a) Beesley R M, Ingold C K, Thorpe J F. J. Chem. Soc., 1915, 107: 1080; (b) Ingold C. K. J. Chem. Soc., 1921, 119: 305; (c) Ingold C K, Sako S, Thorpe J F. J. Chem. Soc., 1922, 120: 1117; (d) Lightstone F C, Bruice T C. J. Am. Chem. Soc., 1994, 116: 10789.
[3] Von Ragué Schleyer P J. Am. Chem. Soc., 1961, 83: 1368.
[4] Galli C, Giovannelli G, Illuminati G, Mandolini L. J. Org. Chem., 1979, 44: 1258.
[5] (a) Bruice T C, Pandit U K. J. Am. Chem. Soc., 1960, 82: 5858; (b) Bruice T C, Pandit U K. Proc. Natl. Acad. Sci. U. S. A., 1960, 46: 402.
[6] Jung M E, Gervay J. J. Am. Chem. Soc., 1991, 113: 224.
[7] Allinger N L, Zalkow V. J. Org. Chem., 1960, 25: 701.
[8] (a) Karaman R. Tetrahedron Lett., 2009, 50: 6083; (b) Brown R F, Van Gulick N M. J. Org. Chem., 1956, 21: 1046.
[9] Kostal J, Jorgensen W L. J. Am. Chem. Soc., 2010, 132: 8766.
[10] Lambert T H, Coscia R W. J. Am. Chem. Soc., 2009, 131: 2496.
[11] Nilsson H, Smith L Z. Phys. Chem., 1933, 166: 136.
[12] Bloodworth A J, Davies A G, Griffin I M, Muggleton B, Roberts B P. J. Am. Chem. Soc., 1974, 96: 7599.
[13] (a) Jung M E, Trifunovich I D, Lensen N. Tetrahedron Lett., 1992, 33: 6719; (b) Jung M E, Kiankarimi M. J. Org. Chem., 1995, 60: 7013; (c) Jung M E, Marquez R. Tetrahedron Lett., 1997, 38: 6521; (d) Jung M E, Kiankarimi M. J. Org. Chem., 1998, 63: 2968; (e) Jung M E, Marquez R, Houk K N. Tetrahedron Lett., 1999, 40: 2661; (f) Jung M E. Synlett, 1999, 843.
[14] Chaumontet M, Piccardi R, Audic N, Hitce J, Peglion J L, Clot E, Baudoin O. J. Am. Chem. Soc.,2008, 130: 15157.
[15] Shiina I, Umezaki Y, Kuroda N, Iizumi T, Nagai S, Katoh T. J. Org. Chem., 2012, 77: 4885.
[16] Thamapipol S, Bernardinelli G., Besnard C, Kundig E P. Org. Lett., 2010, 12: 5604.
[17] Bouwkamp M W, Bowman A C, Lobkovsky E, Chirik P J. J. Am. Chem. Soc., 2006, 128: 13340.
[18] Li M, Datta S, Barber D M, Dixon D. J. Org. Lett., 2012, 14: 6350.
[19] Nelson B, Herres-Pawlis S, Hiller W, Preut H, Strohmann C, Hiersemann M. J. Org. Chem., 2012, 77: 4980.
[20] Nemoto T, Ishige Y, Yoshida M, Kohno Y, Kanematsu M, Hamada Y. Org. Lett., 2010, 12: 5020.
[21] Gidlöf R, Johansson M, Sterner O. Org. Lett., 2010, 12: 5100.
[22] Kim N, Kim Y, Park W, Sung D, Gupta A K, Oh C H. Org. Lett., 2005, 7: 5289.
[23] Tanaka K, Wada A, Noguchi K. Org. Lett., 2006, 8: 907.
[24] Kezuka S, Tanaka S, Ohe T, Nakaya Y, Takeuchi R J. Org. Chem., 2006, 71: 543.
[25] Amatore M, Leboeuf D, Malacria M, Gandon V, Aubert C. J. Am. Chem. Soc., 2013, 135 (12): 4576.
[26] Yun S Y, Wang K P, Lee N K, Mamidipalli P, Lee D. J. Am. Chem. Soc., 2013, 135: 4668.
[27] Smith D M, Pulling M E, Norton J R. J. Am. Chem. Soc., 2007, 129: 770.
[28] Wong Y C, Tseng C T, Kao T T, Yeh Y C, Shia K S. Org. Lett., 2012, 14: 6024.
[29] Geum S, Lee H Y. Org. Lett., 2014, 16: 2466.
[30] (a) Bexrud J A, Beard J D, Leitch D C, Schafer L L. Org. Lett., 2005, 7: 1959; (b) Chong E, Qayyum S, Schafer L L, Kempe R. Organometallics, 2013, 32: 1858.
[31] Crimmin M R, Arrowsmith M, Barrett A G M, Casely I J, Hill M S, Procopiou P A. J. Am. Chem. Soc., 2009, 131: 9670.
[32] Zhang X, Emge T J, Hultzsch K C. Organometallics, 2010, 29: 5871.
[33] Kim J Y, Livinghouse T. Org. Lett., 2005, 7: 4391.
[34] Lu E, Gan W, Chen Y. Dalton Trans., 2011, 40: 2366.
[35] Wang X, Chen Z, Sun X L, Tang Y, Xie Z. Org. Lett., 2011, 13: 4758.
[36] Liu Z, Hartwig J F. J. Am. Chem. Soc., 2008, 130: 1570.
[37] (a) Gribkov D V, Hultzsch K C, Hampel F. J. Am. Chem. Soc., 2006, 128: 3748; (b) Reznichenko A L, Hultzsch K C. Organometallics, 2013, 32: 1394; (c)Zhang Y, Yao W, Li H, Mu Y. Organometallics, 2012, 31: 4670.
[38] (a) Otero A, Lara-Sánchez A, Nájera C, Fernández-Baeza J, Márquez-Segovia I, Castro-Osma J A, Martínez J, Sánchez-Barba L F, Rodríguez A M. Organometallics, 2012, 31: 2244; (b) Riegert D, Collin J, Meddour A, Schulz E, Trifonov A. J. Org. Chem., 2006, 71: 2514.
[39] (a) Hayes C E, Platel R H, Schafer L L, Leznoff D B. Organometallics, 2012, 31: 6732; (b) Stubbert B D, Marks T J. J. Am. Chem., 2007, 129: 4253.
[40] Bauer E B, Andavan G T S, Hollis T K, Rubio R J, Cho J, Kuchenbeiser G R, Helgert T R, Letko C S, Tham F S. Org. Lett., 2008, 10: 1175.
[41] Liu G Q, Li W, Wang Y M, Ding Z Y, Li Y M. Tetrahedron Lett., 2012, 53: 4393.
[42] Hirner J J, Roth K E, Shi Y, Blum S A. Organometallics, 2012, 31: 6843.
[43] Lo V K Y, Guo Z, Choi M K W, Yu W Y, Huang J S, Che C M. J. Am. Chem. Soc., 2012, 134: 7588.
[44] Wasa M, Yu J Q. J. Am. Chem. Soc., 2008, 130: 14058.
[45] Sibbald P A, Michael F E. Org. Lett., 2009, 11: 1147.
[46] Xing D, Yang D. Org. Lett., 2013, 15: 4370.
[47] Brown A R, Uyeda C, Brotherton C A, Jacobsen E N. J. Am. Chem. Soc., 2013, 135: 6747.
[48] Kaneti J, Kirby A J, Koedjikov A H, Pojarlieff I G. Org. Biomol. Chem., 2004, 2: 1098.
[49] Jung M E, Vu B T. Tetrahedron Lett., 1996, 37: 451.
[50] Nakamura M, Takahashi I, Yamada S, Dobashi Y, Kitagawa O. Tetrahedron Lett., 2011, 52: 53.
[51] Sun C, Fang Y, Li S, Zhang Y, Zhao Q, Zhu S, Li C, Org. Lett., 2009, 11: 4084.
[52] Patil N T, Raut V S, Kavthe R D, Reddy V V N, Raju P V K. Tetrahedron Lett., 2009, 50: 6576.
[53] Takemura N, Kuninobu Y, Kanai M. Org. Lett., 2013, 15: 844.
[54] (a) Yang M, Jiang X, Shi W J, Zhu Q L, Shi Z J. Org. Lett., 2013, 15: 690; (b) Cheng X F, Li Y, Su Y M, Yin F, Wang J Y, Sheng J, Vora H U, Wang X S, Yu J Q. J. Am. Chem. Soc., 2013, 135: 1236.
[55] Antoniotti S, Duach E. Tetrahedron Lett., 2009, 50: 2536.
[56] Ting C M, Wang C D, Chaudhuri R, Liu R S. Org. Lett., 2011, 13: 1702.
[57] Genin E, Toullec P Y, Antoniotti S, Brancour C, Genêt J P, Michelet V. J. Am. Chem. Soc., 2006, 128: 3112.
[58] (a) Yu X, Seo S, Marks T J. J. Am. Chem. Soc., 2007, 129: 7244; (b) Seo S,Yu X,Marks T J. J. Am. Chem. Soc.,2008, 131: 263.
[59] Dzudza A, Marks T. J. Org. Lett., 2009, 11:1523.
[60] Brinkmann C, Barrett A G M, Hill M S, Procopiou P A, Reid S. Organometallics, 2012, 31: 7287.
[61] Just Z W, Larock R C. J. Org. Chem., 2008, 73: 2662.
[62] Wang C, Russell G A. J. Org. Chem., 1999, 64: 2066.
[63] Kayaki Y, Yamamoto M, Ikariya T. J. Org. Chem., 2007, 72: 647.
[64] (a) Neatu F, Parvulescu V I, Michelet V, Genet J P, Goguet A, Hardacre C. New J. Chem., 2009, 33: 102; (b) Neatu F, Protesescu L, Florea M, Parvulescu V I, Teodorescu C M, Apostol N, Toullec P Y, Michelet V. Green Chem., 2010, 12: 2145.
[65] Takizawa S, Nguyen T M N, Grossmann A, Suzuki M, Enders D, Sasai H. Tetrahedron, 2013, 69: 1202.
[66] Lin A, Zhang Z W, Yang J. Org. Lett., 2014, 16: 386.
[67] Schemid M B, Zeitler K, Gschwind R M. J. Am. Chem. Soc., 2011, 133: 7065.
[68] Chen N, Huang Z Y, Zhou C, Xu J X. Tetrahedron, 2011, 67: 7971.
[69] Eom D, Jeong Y, Kim Y R, Lee E, Choi W, Lee P H. Org. Lett., 2013, 15: 5210.
[70] Ishida N, Ikemoto W, Murakami M. Org. Lett., 2012, 14: 3230.
[71] Zhao J, Liu S, Marino N, Clark D A. Chem. Sci., 2013, 4: 1547.
[72] Li B, Driess M, Hartwig J F. J. Am. Chem. Soc. 2014, 136, 6586.
[73] Kitagaki S, Kajita M, Narita S, Mukai C. Org. Lett., 2012, 14: 1366.
[74] Kern N, Blanc A, Miaskiewicz S, Robinette M, Weibel J M, Pale P. J. Org. Chem., 2012, 77: 4323.
[75] (a) Lee I S, Kang E H, Park H, Choi T L. Chem. Sci., 2012, 3: 761; (b) Park H, Lee H K, Choi T L. Polym. Chem., 2013, 4: 4676.
[76] Thalji R K, Ahrendt K A, Bergman R G, Ellman J A. J. Org. Chem., 2005, 70: 6775.
[77] Hart-Cooper W M, Clary K N, Toste F D, Bergman R G, Raymond K N. J. Am. Chem. Soc., 2012, 134: 17873.
[78] (a) Onodera G, Suto M, Takeuchi R. J. Org. Chem., 2012, 77: 908; (b) Onodera G, Shimizu Y, Kimura J-n, Kobayashi J, Ebihara Y, Kondo K, Sakata K, Takeuchi R. J. Am. Chem. Soc., 2012, 134: 10515.
[79] Jung M S, Kim W S, Shin Y H, Jin H J, Kim Y S, Kang E. J. Org. Lett., 2012, 14: 6262.
[80] Xu X, Chen Y, Feng J, Zou G, Sun J. Organometallics, 2010, 29: 549.
[81] Ying Y, Kim H, Hong J. Org. Lett., 2011, 13: 796.
[82] Mancuso R, Mehta S, Gabriele B, Salerno G, Jenks W S, Larock R C. J. Org. Chem., 2009, 75: 897.
[83] Lu Y, Wang D H, Engle K M, Yu J Q. J. Am. Chem. Soc., 2010, 132: 5916.
[84] Varela-Fernaández A, Gonzaález-Rodríguez C, Varela J S A, Castedo L, Saá C. Org. Lett., 2009, 11: 5350.
[85] Murphy S K, Dong V M. J. Am. Chem. Soc., 2013, 135: 5553.
[86] Kim H, Hong J. Org. Lett., 2010, 12: 2880.
[87] Lee N K, Yun S Y, Mamidipalli P, Salzman R M, Lee D, Zhou T, Xia Y. J. Am. Chem. Soc., 2014, 136:4363.
[88] Lanier M L, Kasper A C, Kim H, Hong J. Org. Lett., 2014, 16: 2406.
[89] Rijn J A, Gouré E, Siegler M A, Spek A L, Drent E, Bouwman E. J. Organometallic Chem., 2011, 696: 1899.
[90] Mahendar L, Krishna J, Reddy A G K, Ramulu B V, Satyanarayana G. Org. Lett., 2012, 14: 628.
[91] Albert J, Ariza X, Calvet T, Font-Bardia M, Garcia J, Granell J, Lamela A, López B, Martinez M, Ortega L, Rodriguez A, Santos D. Organometallics, 2013, 32: 649.

[1] Zhicheng Fu, Jiaxi Xu. Synthesis of Oxetanes [J]. Progress in Chemistry, 2021, 33(6): 895-906.
[2] Ruixuan Qin, Guocheng Deng, Nanfeng Zheng. Assembling Effects of Surface Ligands on Metal Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1140-1157.
[3] He Huang, Chuanjun Song, Junbiao Chang. Acylation Using Carboxylic Acids as Acylating Agents: Applications in Organic Synthesis [J]. Progress in Chemistry, 2019, 31(1): 1-9.
[4] Zhicheng Fu, Jiaxi Xu*. Synthesis of Azetidines [J]. Progress in Chemistry, 2018, 30(8): 1047-1066.
[5] Wang Jiandong, Xu Jiaxi. Stereoselective Models for the Electrophilic Addition on the Double Bond Adjacent to A Chiral Centre [J]. Progress in Chemistry, 2016, 28(6): 784-800.
[6] Deng Yunpan, Yang Bo, Yu Gang, Zhuo Qiongfang, Deng Shubo, Zhang Hong. Catalytic Hydrodehalogenation of Halogenated Organic Compounds with Metal Complexes [J]. Progress in Chemistry, 2016, 28(4): 564-576.
[7] Zhang Wensheng, Li Wei, Kuang Chunxiang. Application of 1,1-Dibromo-2-Arylalkene in Cyclization Reaction [J]. Progress in Chemistry, 2013, 25(07): 1149-1157.
[8] Wang Qifang Song Xiaokai Yan Chaoguo. Application of Malononitrile in Multicomponent Reactions [J]. Progress in Chemistry, 2009, 21(05): 997-1007.
[9] Tian Shanxi. Hydrogen Bonding Effects on Conformational Stabilities and Dissociative Photoionization Dynamics of Amino Acids [J]. Progress in Chemistry, 2009, 21(04): 600-605.
[10] Wang Guixia1 Wang Naixing1** Tang Shi1 Yu Jinlan2 Tang Xinliang2. Asymmetric Synthesis of Chroman Derivatives with Bioactivity [J]. Progress in Chemistry, 2008, 20(04): 518-525.
[11] Shen Yumei,He Ren. Research on Olefin Oligomerization and Cyclization Catalyzed by Metallocene Catalyst [J]. Progress in Chemistry, 2000, 12(03): 325-.